Answer:
5
Step-by-step explanation:
y^1 = 5^1 (y = 5)
Anything raised to the power of 1 is just itself.
So, 5^1 = 5
Answer:
(-7, -12)
Step-by-step explanation:
4x-3y=8
5x-2y=-11
Is there any of the like terms can be added and the result will be 0? No, so we have to multiple one OR both of the equations to make that one number do that.
(I will try to remove the y like terms so i will multiple both of them by the opposite so both of the ys will be 6)
2(4x-3y=8)
-3(5x-2y=-11)
8x-6y=16
-15x+6y=33
(now the easy part… cancel the 6s and add the equations)
8x+(-15x)=-7x
16+33=49
-7x=49
(divide 49 by -7)
x=-7
Replace x in any of the equations and you’ll get the y value.
4x-3y=8
4(-7)-3y=8
-28-3y=8
-3y=36
y=12
Threfore, there is one solution which is….. (-7,-12)
Answer:
It is correct
Step-by-step explanation:
Gr8 job
<h3>
Answer:</h3>
System
Solution
- p = m = 5 — 5 lb peanuts and 5 lb mixture
<h3>
Step-by-step explanation:</h3>
(a) Generally, the equations of interest are one that models the total amount of mixture, and one that models the amount of one of the constituents (or the ratio of constituents). Here, there are two constituents and we are given the desired ratio, so three different equations are possible describing the constituents of the mix.
For the total amount of mix:
... p + m = 10
For the quantity of peanuts in the mix:
... p + 0.2m = 0.6·10
For the quantity of almonds in the mix:
... 0.8m = 0.4·10
For the ratio of peanuts to almonds:
... (p +0.2m)/(0.8m) = 0.60/0.40
Any two (2) of these four (4) equations will serve as a system of equations that can be used to solve for the desired quantities. I like the third one because it is a "one-step" equation.
So, your system of equations could be ...
___
(b) Dividing the second equation by 0.8 gives
... m = 5
Using the first equation to find p, we have ...
... p + 5 = 10
... p = 5
5 lb of peanuts and 5 lb of mixture are required.