143 cards, you can find this using the LCM or least common multiple. <span />
Try B . because paperback is x and the club is 10 dollars to get in so you ... And its 5.99 for a book keep word is plus so you do 10x + 5.99
For the lines to be parallel the two angles need to be equal to each other:
128-x = x
Add 1x to both sides
128 = 2x
Divide both sides by 2:
X = 128/2
X = 64
Answer: x = 64
Answer:
Step-by-step explanation:
Q1) 15+15+15+15+15+15=90
Answer : 1 over 90 as a fraction
Q2) 2 over 2
Q6) 13 over 52
Answer:
Option d) 5 to the power of negative 5 over 6 is correct.
![\dfrac{\sqrt[3]{\bf 5} \times \sqrt{\bf 5}}{\sqrt[3]{\bf 5^{\bf 5}}}= 5^{\frac{\bf -5}{\bf 6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B%5Cbf%205%7D%20%5Ctimes%20%5Csqrt%7B%5Cbf%205%7D%7D%7B%5Csqrt%5B3%5D%7B%5Cbf%205%5E%7B%5Cbf%205%7D%7D%7D%3D%205%5E%7B%5Cfrac%7B%5Cbf%20-5%7D%7B%5Cbf%206%7D%7D)
Above equation can be written as 5 to the power of negative 5 over 6.
ie, 
Step-by-step explanation:
Given that cube root of 5 multiplied by square root of 5 over cube root of 5 to the power of 5.
It can be written as below
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{1}{3}} \times 5^{\frac{1}{2}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%20%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Ctimes%205%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{1}{3}+\frac{1}{2}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{2+3}{6}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B2%2B3%7D%7B6%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= 5^{\frac{5}{6}} \times 5^{\frac{-5}{3}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%205%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%20%5Ctimes%205%5E%7B%5Cfrac%7B-5%7D%7B3%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= 5^{\frac{5-10}{6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%205%5E%7B%5Cfrac%7B5-10%7D%7B6%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{5^5}= 5^{\frac{-5}{6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B5%5E5%7D%3D%205%5E%7B%5Cfrac%7B-5%7D%7B6%7D%7D)
Above equation can be written as 5 to the power of negative 5 over 6.