Answer:
See explanation
Step-by-step explanation:
If segment AB is tangent to the smaller circle, than AB⊥OR. Consider two right triangles AOR and BOR. In these triangles:
- OR is common leg;
- AO=OB as radii of larger circle;
- ∠ARO=∠BRO, because AB⊥OR.
By HL theorem, ttriangles AOR and BOR are congruent. This gives you that AR=RB.
The answer to this question is c. which is 18
Answer:
57.453 ft
Step-by-step explanation:
Glad to help ! :)
There are several information's already given in the question. based on those information's, the answer can be easily determined.
Height of the box = h cm
Length of the box = 10 cm
Width of the box = 2h
Then
Volume of the box = Length * height * width
= 10 * h * 2h cubic cm
= 20h^2 cm^3
I hope that the above procedure is clear enough for you to understand and it has actually come to your desired help.
Answer:
Step-by-step explanation:
Here a equation of the line is given to us and we need to find out the equation of line which passes through the given point and parallel to the given line , the given equation is ,
Firstly convert it into <em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>n</em><em>t</em><em>e</em><em>r</em><em>c</em><em>e</em><em>p</em><em>t</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em> </em>of the line which is <u>y</u><u> </u><u>=</u><u> </u><u>m</u><u>x</u><u> </u><u>+</u><u> </u><u>x</u><u> </u>, as ;
On comparing it to <em>y</em><em> </em><em>=</em><em> </em><em>m</em><em>x</em><em> </em><em>+</em><em> </em><em>c</em><em> </em>, we have ,
Now as we know that the <em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>o</em><em>f</em><em> </em><em>t</em><em>w</em><em>o</em><em> </em><em>p</em><em>a</em><em>r</em><em>a</em><em>l</em><em>l</em><em>e</em><em>l</em><em> </em><em>l</em><em>i</em><em>n</em><em>e</em><em>s</em><em> </em><em>i</em><em>s</em><em> </em><em>s</em><em>a</em><em>m</em><em>e</em><em> </em>. Therefore the slope of the parallel line will be ,
Now we may use <em>p</em><em>o</em><em>i</em><em>n</em><em>t</em><em> </em><em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em> </em>of the line as ,
On substituting the respective values ,
Again the equation can be rewritten as ,
