Answer:
p =
and q = 
Step-by-step explanation:
Given equations:
2p - 3q = 4 -----------(i)
3p + 2q = 9 ------------(ii)
Let's solve this equation simultaneously using the <em>elimination method</em>
(a) Multiply equation (i) by 3 and equation (ii) by 2 as follows;
[2p - 3q = 4] x 3
[3p + 2q = 9] x 2
6p - 9q = 12 -------------(iii)
6p + 4q = 18 -------------(iv)
(b) Next, subtract equation (iv) from equation (iii) as follows;
[6p - 9q = 12]
<u> - [6p + 4q = 18] </u>
<u> -13q = -6 </u> -----------------(v)
<u />
<u>(c)</u> Next, make q subject of the formula in equation (v)
q = 
(d) Now substitute the value of q =
into equation (i) as follows;
2p - 3(
) = 4
(e) Now, solve for p in d above
<em>Multiply through by 13;</em>
26p - 18 = 52
<em>Collect like terms</em>
26p = 52 + 18
26p = 70
<em>Divide both sides by 2</em>
13p = 35
p = 
Therefore, p =
and q = 
Well the first part of the table is 7 cause 7x5- 35 x 6 is 42 x 7 49. Second part of the table is 8 x 5 40 x6 is 48 x 7 is 56. once you know this it is easy just to common factor it or just simply add 5 6 or 7 to the numbers already given
Answer:
16n^2+40n+25
Step-by-step explanation:
Answer:

Step-by-step explanation:
The picture of the question in the attached figure
step 1
Let
r ---> the radius of the sector
s ---> the arc length of sector
Find the radius r
we know that



solve for r

step 2
Find the value of s

substitute the value of r

step 3
we know that
The area of complete circle is equal to

The complete circle subtends a central angle of 2π radians
so
using proportion find the area of the sector by a central angle of angle theta
Let
A ---> the area of sector with central angle theta

substitute the value of r


Convert to function notation
