The pulmonary veins transport oxygenated blood back to the heart from the lungs, while the pulmonary arteries move deoxygenated blood from the heart to the lungs.)
Answer:
The humble sunflower appears not quite of this earth. Its yellow crowned head sits atop its stalk like a green broomstick. Its seeds, arranged in a logarithmic spiral, are produced by tiny flowers called disc florets that emerge from the center of its head and radiate outward. But aside from being a biological marvel, the sunflower is also often in the scientific spotlight.
From understanding how new plant species emerge to studying “solar tracking,” which is how the flowers align themselves with the sun’s position in the sky, sunflowers are a darling in the field of science. However, researchers can only get so far in understanding a plant without detailed genetic knowledge. And after close to a decade, it has finally unfurled itself.An international consortium of 59 researchers who set their sights on the laborious task of sequencing and assembling the sunflower’s genome published their results in a 2017 study in Nature. This achievement will provide a genetic basis for understanding how the sunflower responds and adapts to different environments. “We are on the cusp of understanding sunflower adaptability,” says Loren Rieseberg, a leading sunflower expert at the University of British Columbia and a supervisor of this study.
With its genome assembled, scientists are hopeful for the next phase of the sunflower’s scientific career: as a “model crop” for studying climate adaptability in plants. This task is more complex and urgent now than ever. Climate change, according to a paper in the Annals of Botany, “will influence all aspects of plant biology over the coming decades,” posing a threat to crops and wild plants alike.
As shown in detail in the absorption spectra, chlorophyll absorbs light in the red (long wavelength) and the blue (short wavelength) regions of the visible light spectrum. Green light is not absorbed but reflected, making the plant appear green
Answer:
Eating a diet of low levels of protein could leave you to development a condition called edema, which causes swelling in your legs and feet from the buildup of fluids. Protein plays an essential role in maintaining salt and water inside your blood vessels and ensuring fluid does it make its way into the tissues. Hajima can cause stiffness, difficulty walking, increasingly painful swelling.
Explanation: