1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLEGan [10]
3 years ago
9

Jackie deposited $315 into a bank account that earned 1.5% simple interest each year.

Mathematics
1 answer:
Brrunno [24]3 years ago
3 0

Answer:

copied from InesWalston expert

Money in the bank account after 3 years will be  $329.18

Step-by-step explanation:

Jackie deposited $315 into a bank account that earned 1.5% simple interest each year for 3 year, while no money was deposited into or withdrawn from the account.

We know that,

i = p.r.t / 100

Where,

i = interest

P = Principal = $315

r = Rate of interest = 1.5% annual

t = time period = 3 years

Putting the values,

i = 315 × 1.5 × 3 / 100 = $14.18

Total money in bank account = Principal + interest = 315 + 14.18 = $329.18

You might be interested in
Which of the following statements about the polynomial function f(x)=x^3+2x^2-1
ch4aika [34]

x = -1

x =(1-√5)/-2= 0.618

x =(1+√5)/-2=-1.618

Step  1  :

Equation at the end of step  1  :

 0 -  (((x3) +  2x2) -  1)  = 0  

Step  2  :  

Step  3  :

Pulling out like terms :

3.1     Pull out like factors :

  -x3 - 2x2 + 1  =   -1 • (x3 + 2x2 - 1)  

3.2    Find roots (zeroes) of :       F(x) = x3 + 2x2 - 1

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -1.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        0.00      x + 1  

     1       1        1.00        2.00      

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  x3 + 2x2 - 1  

can be divided with  x + 1  

Polynomial Long Division :

3.3    Polynomial Long Division

Dividing :  x3 + 2x2 - 1  

                             ("Dividend")

By         :    x + 1    ("Divisor")

dividend     x3  +  2x2      -  1  

- divisor  * x2     x3  +  x2          

remainder         x2      -  1  

- divisor  * x1         x2  +  x      

remainder          -  x  -  1  

- divisor  * -x0          -  x  -  1  

remainder                0

Quotient :  x2+x-1  Remainder:  0  

Trying to factor by splitting the middle term

3.4     Factoring  x2+x-1  

The first term is,  x2  its coefficient is  1 .

The middle term is,  +x  its coefficient is  1 .

The last term, "the constant", is  -1  

Step-1 : Multiply the coefficient of the first term by the constant   1 • -1 = -1  

Step-2 : Find two factors of  -1  whose sum equals the coefficient of the middle term, which is   1 .

     -1    +    1    =    0  

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Equation at the end of step  3  :

 (-x2 - x + 1) • (x + 1)  = 0  

Step  4  :

Theory - Roots of a product :

4.1    A product of several terms equals zero.  

When a product of two or more terms equals zero, then at least one of the terms must be zero.  

We shall now solve each term = 0 separately  

In other words, we are going to solve as many equations as there are terms in the product  

Any solution of term = 0 solves product = 0 as well.

Parabola, Finding the Vertex :

4.2      Find the Vertex of   y = -x2-x+1

For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is  -0.5000  

Plugging into the parabola formula  -0.5000  for  x  we can calculate the  y -coordinate :  

 y = -1.0 * -0.50 * -0.50 - 1.0 * -0.50 + 1.0

or   y = 1.250

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = -x2-x+1

Axis of Symmetry (dashed)  {x}={-0.50}  

Vertex at  {x,y} = {-0.50, 1.25}  

x -Intercepts (Roots) :

Root 1 at  {x,y} = { 0.62, 0.00}  

Root 2 at  {x,y} = {-1.62, 0.00}  

Solve Quadratic Equation by Completing The Square

4.3     Solving   -x2-x+1 = 0 by Completing The Square .

Multiply both sides of the equation by  (-1)  to obtain positive coefficient for the first term:

x2+x-1 = 0  Add  1  to both side of the equation :

  x2+x = 1

Now the clever bit: Take the coefficient of  x , which is  1 , divide by two, giving  1/2 , and finally square it giving  1/4  

Add  1/4  to both sides of the equation :

 On the right hand side we have :

  1  +  1/4    or,  (1/1)+(1/4)  

 The common denominator of the two fractions is  4   Adding  (4/4)+(1/4)  gives  5/4  

 So adding to both sides we finally get :

  x2+x+(1/4) = 5/4

Adding  1/4  has completed the left hand side into a perfect square :

  x2+x+(1/4)  =

  (x+(1/2)) • (x+(1/2))  =

 (x+(1/2))2

Things which are equal to the same thing are also equal to one another. Since

  x2+x+(1/4) = 5/4 and

  x2+x+(1/4) = (x+(1/2))2

then, according to the law of transitivity,

  (x+(1/2))2 = 5/4

We'll refer to this Equation as  Eq. #4.3.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

  (x+(1/2))2   is

  (x+(1/2))2/2 =

 (x+(1/2))1 =

  x+(1/2)

Now, applying the Square Root Principle to  Eq. #4.3.1  we get:

  x+(1/2) = √ 5/4

Subtract  1/2  from both sides to obtain:

  x = -1/2 + √ 5/4

Since a square root has two values, one positive and the other negative

  x2 + x - 1 = 0

  has two solutions:

 x = -1/2 + √ 5/4

  or

 x = -1/2 - √ 5/4

Note that  √ 5/4 can be written as

 √ 5  / √ 4   which is √ 5  / 2

Solve Quadratic Equation using the Quadratic Formula

4.4     Solving    -x2-x+1 = 0 by the Quadratic Formula .

According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

           - B  ±  √ B2-4AC

 x =   ————————

                     2A

 In our case,  A   =     -1

                     B   =    -1

                     C   =   1

Accordingly,  B2  -  4AC   =

                    1 - (-4) =

                    5

Applying the quadratic formula :

              1 ± √ 5

  x  =    ————

                  -2

 √ 5   , rounded to 4 decimal digits, is   2.2361

So now we are looking at:

          x  =  ( 1 ±  2.236 ) / -2

Two real solutions:

x =(1+√5)/-2=-1.618

or:

x =(1-√5)/-2= 0.618

Solving a Single Variable Equation :

4.5      Solve  :    x+1 = 0  

Subtract  1  from both sides of the equation :  

                     x = -1

Hope this helps.

6 0
3 years ago
F(x) = 4x - 9 <br> i need helpp
Masteriza [31]

Answer:

Step-by-step explanation:

10

5 0
3 years ago
Read 2 more answers
I’ll give you all my love and affection if you help me with this ASAP PLEASE ;)
Zinaida [17]

Answer:

(0,12)

Step-by-step explanation:

Plug 0 into y

7 0
3 years ago
Dos cuadrados de lado
Kaylis [27]

La franja amarilla del rectángulo tiene un área de 30 centímetros cuadrados.

<h3>¿Cuál es el área de la franja amarilla del rectángulo?</h3>

En este problema tenemos un rectángulo formado por dos cuadrados que se traslapan uno al otro. La franja amarilla es el área en la que los cuadrados se traslapan. La anchura del rectángulo es descrita por la siguiente ecuación:

(10 - x) + 2 · x = 17

Donde x se mide en centímetros.

A continuación, despejamos x en la ecuación descrita:

10 + x = 17

x = 7

Ahora, el área de la franja amarilla se determina mediante la fórmula de area de un rectángulo:

A = b · h

Donde:

  • b - Base del rectángulo, en centímetros.
  • h - Altura del rectángulo, en centímetros.
  • A - Área del rectángulo, en centímetros cuadrados.

A = (10 - 7) · 10

A = 3 · 10

A = 30

El área de la franja amarilla del rectángulo es igual a 30 centímetros cuadrados.

Para aprender más sobre áreas de rectángulos: brainly.com/question/23058403

#SPJ1

8 0
1 year ago
What is the value of x? Round to the nearest tenths place.<br> 15 ft<br> 20 ft<br> X
marshall27 [118]

Answer:

300f²t²

Step-by-step explanation:

I hope this helps

6 0
2 years ago
Other questions:
  • 9)7624 what's the remainder ​
    9·2 answers
  • I need to know why the answer is 12.5 and how you got it.
    6·1 answer
  • Please help me......
    7·1 answer
  • Can I have help help on 22,24,26,28,30 please
    9·1 answer
  • Max has a monthly salary of $1,100 and also earns 7.5% commission on his sales. If Max had $43,000 in sales last month, what wer
    7·2 answers
  • What is the length and width of rhe rectangle 2.1 length 1.2 width write it as fraction
    6·1 answer
  • a dairy needs 306 gallon of milk containing 6% butterfat. how much gallons each of milk containing 7% butterfat and milk contain
    14·1 answer
  • How do you solve this <br> 21 = 14 + 7x
    7·1 answer
  • Solve for x. Round your answer to the nearest hundredth.<br> 2x^2-6x+3=0
    11·1 answer
  • Help Me On This!!<br><br><img src="https://tex.z-dn.net/?f=%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20" id="TexFormula1" title=" \\ \\
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!