The simplest and probably the best way to understand this problem is to make up a problem that obeys what you have been given. It doesn't have to be realistic. It just has to obey the conditions. Let us suppose that you thought the diameter of the tire is 1 yard. That would mean the circumfrence is pi * d
C = 3.14 * 1
That would mean that the circumference is 3.14 yards. It would also mean that you would have to have the wheel turn 1760 yards / /3.14 yards / revolution which is about 561 revolutions / mile. So the way I have set up the problem, my equation is d = 561 * R where R is the number of revolutions.
Now let's see what happens when you say "O my Goodness, the wheel diameter is really 32 inches" which 0.8888888 yards what happens now?
Now you still have to go 1760 yards How many revolutions is that?
C = pi * d
C = 3.14 * 0.88888888
C = 2.79111 yards
How many revolutions does it take to 1760 yards.
R = 1760 // 2.78111 yards / revolution
R = 631 revolutions / mile. What happened?
Your constant goes up if the wheel diameter goes down. Think about this. Do you ride a bicycle? I do. It makes perfect sense to me that if the wheel is small, it will have to turn more often to go a mile. No matter where that 0.00125 comes from or how it was derived, the constant will have to go up if the wheel gets smaller.
5+5+6 then that’s your answer
Answer:
Option C.
Step-by-step explanation:
We need to find the correct definition of like terms.
Like terms :Two or more terms are called like terms if they have the same variables and same powers.
For example : 4xy and 9xy are like terms.
Option A is incorrect because 3x and 3 are not like terms.
Option B is incorrect because 6x and 9 are not like terms.
Option C is correct because like terms are terms that have the same variable factors as well as the same number of factors of each type. For example, 3x and 5x are like terms.
Option D is incorrect because 3x and 5 are not like terms.
Therefore, the correct option is C.
Step 1: Subtract -2 from both sides.<span><span><span><span>
m2</span>+<span>4m</span></span>−<span>(<span>−2</span>)</span></span>=<span><span>−2</span>−<span>(<span>−2</span>)</span></span></span><span><span><span><span>
m2</span>+<span>4m</span></span>+2</span>=0</span>
Step 2: Use quadratic formula with a=1, b=4, c=2.<span>
m=<span><span><span>−b</span>±<span>√<span><span>b2</span>−<span><span>4a</span>c</span></span></span></span><span>2a</span></span></span><span>
m=<span><span><span>−<span>(4)</span></span>±<span>√<span><span><span>(4)</span>2</span>−<span><span>4<span>(1)</span></span><span>(2)</span></span></span></span></span><span>2<span>(1)</span></span></span></span><span>
m=<span><span><span>−4</span>±<span>√8</span></span>2</span></span><span><span>
m=<span><span>−2</span>+<span><span><span>√2</span><span> or </span></span>m</span></span></span>=<span><span>−2</span>−<span>√2</span></span></span><span>
</span>
Step-by-step explanation:
g*f(x)=g(x+4)=(x+4)³
g*f(-3)=(-3+4)³
= 1³=1