

- <u>We </u><u>have </u><u>given </u><u>that </u><u>the </u><u>coordinates </u><u>of </u><u>the </u><u>end </u><u>point </u><u>G </u><u>and </u><u>H </u><u>are </u><u>(</u><u> </u><u>-</u><u>6</u><u>,</u><u>5</u><u>)</u><u> </u><u>and </u><u>(</u><u> </u><u>2</u><u>,</u><u> </u><u>-</u><u>7</u><u> </u><u>)</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>length </u><u>of </u><u>GH </u>

The coordinates of G = ( -6 , 5 )
The coordinates of H = ( 2 , - 7 )
<u>According </u><u>to </u><u>the </u><u>distance </u><u>formula</u><u>, </u><u> </u><u>we </u><u>get </u><u>:</u><u>-</u><u> </u>

- <u>Here</u><u>, </u><u> </u><u>x1</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>,</u><u> </u><u>x2</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>and </u><u>y1</u><u> </u><u>=</u><u> </u><u>5</u><u> </u><u>,</u><u> </u><u>y2</u><u> </u><u>=</u><u> </u><u>-</u><u>7</u>
<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u>








Answer:
Step-by-step explanation:
Given: The radius of circle O is r, and the radius of circle X is r'.
To prove: Circle O is similar to circle X.
Proof: Move the center of the smaller circle onto the center of the largest circle. Translate the circle X by the vector XA onto circle O. The circles now have the same center.
A dilation is needed to increase the size of circle X to coincide with the circle O. A value which when multiplied by r' will create r.
The scale factor x to increase X:
⇒
A translation followed by a dilation with scale factor will map one circle to the other, thus proving the given both circles similar.
Therefore, circle O is similar to circle X.
Step-by-step explanation:
Answer:
no. it is not because 0.6 is a decimal
Claim: The measures of
and
are equal
Answer: True
Explanation: Dilations preserve the shape of an image, so this means the angles are kept the same whether you shrink or enlarge the preimage.
====================================================
Claim: The coordinates of A and A' are the same
Answer: True
Explanation: The phrasing "dilating about point A" means that point A is the center of the universe, so to speak, in terms of this dilation operation. Point A is the fixed point that does not move while every other point does move. Because the scale factor is 2/3, which is less than 1, this means every other point comes closer to point A. So something like segment AB will get shorter.