Answer: 1 PM = $8
1:15 PM = $9.0
Step-by-step explanation:
a. Since Sadie rents a pair of skates at 10 A.M and returned the skates by 1 P.M, this means the hours spent was 3 hours. Therefore, based on the graph, for 3 hours rented, he will pay $8
The amount that she will pay if she returns them at 1:15 P.M. will be equal to the value of 3 hours 15 minutes which will be:
= $8 + $1.0
= $9.00
Answer:
Step-by-step explanation:
![central \: \angle = \frac{\pi ^{c} }{6} = 30 \degree \\ \\ area \: of \: the \: sector = \frac{30 \degree}{360 \degree} \times \pi {(9)}^{2} \\ \\ = \frac{1}{12} \times 3.14 \times 81 \\ \\ = \frac{1}{12} \times 254.34 \\ \\ = 21.195 \: {ft}^{2} \\ \\ \approx \: 21.2 \: {ft}^{2}](https://tex.z-dn.net/?f=central%20%5C%3A%20%20%5Cangle%20%20%20%3D%20%20%5Cfrac%7B%5Cpi%20%5E%7Bc%7D%20%7D%7B6%7D%20%20%3D%2030%20%5Cdegree%20%5C%5C%20%20%5C%5C%20area%20%5C%3A%20of%20%5C%3A%20the%20%5C%3A%20sector%20%3D%20%20%5Cfrac%7B30%20%5Cdegree%7D%7B360%20%5Cdegree%7D%20%20%5Ctimes%20%5Cpi%20%7B%289%29%7D%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B1%7D%7B12%7D%20%20%5Ctimes%203.14%20%5Ctimes%20%2081%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%20%5Cfrac%7B1%7D%7B12%7D%20%20%5Ctimes%20254.34%20%5C%5C%20%20%5C%5C%20%20%3D%2021.195%20%5C%3A%20%20%7Bft%7D%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Capprox%20%5C%3A%2021.2%20%5C%3A%20%20%7Bft%7D%5E%7B2%7D%20)
The solution depends on the value of
![k](https://tex.z-dn.net/?f=k)
. To make things simple, assume
![k>0](https://tex.z-dn.net/?f=k%3E0)
. The homogeneous part of the equation is
![\dfrac{\mathrm d^2y}{\mathrm dx^2}-16ky=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D-16ky%3D0)
and has characteristic equation
![r^2-16k=0\implies r=\pm4\sqrt k](https://tex.z-dn.net/?f=r%5E2-16k%3D0%5Cimplies%20r%3D%5Cpm4%5Csqrt%20k)
which admits the characteristic solution
![y_c=C_1e^{-4\sqrt kx}+C_2e^{4\sqrt kx}](https://tex.z-dn.net/?f=y_c%3DC_1e%5E%7B-4%5Csqrt%20kx%7D%2BC_2e%5E%7B4%5Csqrt%20kx%7D)
.
For the solution to the nonhomogeneous equation, a reasonable guess for the particular solution might be
![y_p=ae^{4x}+be^x](https://tex.z-dn.net/?f=y_p%3Dae%5E%7B4x%7D%2Bbe%5Ex)
. Then
![\dfrac{\mathrm d^2y_p}{\mathrm dx^2}=16ae^{4x}+be^x](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E2y_p%7D%7B%5Cmathrm%20dx%5E2%7D%3D16ae%5E%7B4x%7D%2Bbe%5Ex)
So you have
![16ae^{4x}+be^x-16k(ae^{4x}+be^x)=9.6e^{4x}+30e^x](https://tex.z-dn.net/?f=16ae%5E%7B4x%7D%2Bbe%5Ex-16k%28ae%5E%7B4x%7D%2Bbe%5Ex%29%3D9.6e%5E%7B4x%7D%2B30e%5Ex)
![(16a-16ka)e^{4x}+(b-16kb)e^x=9.6e^{4x}+30e^x](https://tex.z-dn.net/?f=%2816a-16ka%29e%5E%7B4x%7D%2B%28b-16kb%29e%5Ex%3D9.6e%5E%7B4x%7D%2B30e%5Ex)
This means
![16a(1-k)=9.6\implies a=\dfrac3{5(1-k)}](https://tex.z-dn.net/?f=16a%281-k%29%3D9.6%5Cimplies%20a%3D%5Cdfrac3%7B5%281-k%29%7D)
![b(1-16k)=30\implies b=\dfrac{30}{1-16k}](https://tex.z-dn.net/?f=b%281-16k%29%3D30%5Cimplies%20b%3D%5Cdfrac%7B30%7D%7B1-16k%7D)
and so the general solution would be
Answer:
b. ![68 + 17h = 357](https://tex.z-dn.net/?f=%2068%20%2B%2017h%20%3D%20357%20)
f. 17 hours
Step-by-step explanation:
Charges for coming to my house = $68 (this will be the constant of the equation)
Amount charged per hour labor = $17
hours = h
Total amount paid to Mike = 357
The equation that represents this situation can be expressed as:
![68 + 17h = 357](https://tex.z-dn.net/?f=%2068%20%2B%2017h%20%3D%20357%20)
Solve for h
(subtraction property of equality)
![17h = 289](https://tex.z-dn.net/?f=%2017h%20%3D%20289%20)
(division property of equality)
![h = 17](https://tex.z-dn.net/?f=%20h%20%3D%2017%20)
Mike was in my house for 17 hours.
Answer:
32.4
Step-by-step explanation:
14 3/5 = 14.6
14.6*6=87.6
120-87.6=32.4