Answer:
pH = 11.216.
Explanation:
Hello there!
In this case, according to the ionization of ammonia in aqueous solution:

We can set up its equilibrium expression in terms of x as the reaction extent equal to the concentration of each product at equilibrium:
![Kb=\frac{[NH_4^+][OH^-]}{[NH_3]} \\\\1.80x10^{-5}=\frac{x*x}{0.150-x}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BNH_4%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BNH_3%5D%7D%20%5C%5C%5C%5C1.80x10%5E%7B-5%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.150-x%7D)
However, since Kb<<<1 we can neglect the x on bottom and easily compute it via:

Which is also:
![[OH^-]=1.643x10^{-3}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.643x10%5E%7B-3%7DM)
Thereafter we can compute the pOH first:

Finally, the pH turns out:

Regards!
This is true do to all the other particules around
Evaporating is the right one
C(HClO) = 0,3 M.
<span>V(HClO) = 200 mL = 0,2 L.
n(HClO) = </span>c(HClO) · V(HClO).
n(HClO) = 0,06 mol.<span>
c(KClO</span>) =
0,2 M.
<span>V(KClO) = 0,3 L.
n(KClO) = 0,06 mol.
V(buffer solution) = 0,2 L + 0,3 L = 0,5 L.
ck</span>(HClO) = 0,06 mol ÷ 0,5 L = 0,12 M.
cs(KClO) = 0,06 mol ÷ 0,5 L = 0,12 M.<span>
Ka(HClO</span>) =
2,9·10⁻⁸.<span>
This is buffer solution, so use Henderson–Hasselbalch
equation:
pH = pKa + log(cs</span> ÷ ck).<span>
pH = -log(</span>2,9·10⁻⁸) + log(0,12 M ÷ 0,12 M).<span>
pH = 7,54 + 0.
pH = 7,54</span>