Answer: Undecane, C11H24 is a liquid hydrocarbon from the alkane homologue ( family ).
Explanation:
All hydrocarbons burn in air to release H20 and CO2.
Combustion of hydrocarbons thus increases the percentage of CO2 present in the atmosphere which is not so good as CO2 is a greenhouse gas. Greenhouse gases produce the greenhouse effect. The green house effect is the warming effect produced when gases present in the atmosphere allow and retain the radiation from the sun to the earth. Examples of greenhouse gases are CO2, CH4, SO3, NO, CFCs. The greenhouse effect leads to an increase in the temperature of the earth subsequently leading to (I) melting of large amounts of ice at the poles causing flooding. (II) rapid evaporation of water from Earth’s surface. (III) decrease in crop yield.
Also, high concentration CFCs ( chlorofluorocarbons ), as widely used in aerosols, coolants and packaging foams, in the atmosphere depletes the ozone layer leading to global warming. In 1996 an international agreement was reached for a complete ban of CFCs and more countries are now going Green ( using alternative energy sources ) so as to minimize emissions of these greenhouse gases
Answer: Answer is D, water
Explanation: Water is the correct option among all and other options like sugar, oxygen and ATP are the products of the photosynthesis. Water is required along with other reactants to produce these products.
Hey there! :D
Look at the word hydrolysis. Hydro= water Lysis = split. (Root words)
So, water (in terms of the word) is added to help split and breakdown macromolecules.
I hope this helps!
~kaikers
The third option, 2,2,1,2
Answer:
molar composition for liquid
xb= 0.24
xt=0.76
molar composition for vapor
yb=0.51
yt=0.49
Explanation:
For an ideal solution we can use the Raoult law.
Raoult law: in an ideal liquid solution, the vapor pressure for every component in the solution (partial pressure) is equal to the vapor pressure of every pure component multiple by its molar fraction.
For toluene and benzene would be:

Where:
is partial pressure for benzene in the liquid
is benzene molar fraction in the liquid
vapor pressure for pure benzene.
The total pressure in the solution is:
And
Working on the equation for total pressure we have:
Since
We know P and both vapor pressures so we can clear
from the equation.
So
To get the mole fraction for the vapor we know that in the equilibrium:
So
Something that we can see in these compositions is that the liquid is richer in the less volatile compound (toluene) and the vapor in the more volatile compound (benzene). If we take away this vapor from the solution, the solution is going to reach a new state of equilibrium, where more vapor will be produced. This vapor will have a higher molar fraction of the more volatile compound. If we do this a lot of times, we can get a vapor that is almost pure in the more volatile compound. This is principle used in the fractional distillation.