Answer:
208 ft
Step-by-step explanation:
in order to do this we need to find the area of the retangle:
(l x w) 14x20= 280ft
then the area of the rectangle:
a^2 + b^2 = c^2 ( hypotenus lenght )
c= 8.5
now we can plug in to find the area of the triangle, which is 12 (11.99)
then the area of the trapezium= 60
finally we can find the answer
280 - (60+12)= 208 ft :)
Answer:
![\sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
Step-by-step explanation:
At this point, we can transform the square root into a fourth root by squaring the argument, and bring into the other root:
![\sqrt x \cdot \sqrt[4] x =\sqrt [4] {x^2} \cdot \sqrt[4] x = \sqrt[4]{x^2\cdot x} = \sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%20x%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%5Csqrt%20%5B4%5D%20%7Bx%5E2%7D%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%20%5Csqrt%5B4%5D%7Bx%5E2%5Ccdot%20x%7D%20%3D%20%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
Alternatively, if you're allowed to use rational exponents, we can convert everything:
![\sqrt x \cdot \sqrt[4] x = x^{\frac12} \cdot x^\frac14 = x^{\frac12 +\frac14}= x^{\frac24 +\frac14}= x^\frac34 = \sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%20x%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%20x%5E%7B%5Cfrac12%7D%20%5Ccdot%20x%5E%5Cfrac14%20%3D%20x%5E%7B%5Cfrac12%20%2B%5Cfrac14%7D%3D%20x%5E%7B%5Cfrac24%20%2B%5Cfrac14%7D%3D%20x%5E%5Cfrac34%20%3D%20%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
X Y
————-
-2. -4
-1. -8
0. -12
1. -16
2. -20
Answer:
ha 69
Step-by-step explanation:
But thanks for the points
Answer:
(–5, –7)
Step-by-step explanation:
From the question given above, the following data were obtained:
Slope = 9/5
Coordinate 1 = (–10, –16)
x₁ = –10
y₁ = –16
Coordinate 2 = (x₂, y₂)
Next, we shall determine the change in x and y coordinate. This can be obtained as follow:
Slope = change in y–coordinate / change in x–coordinate
Slope = Δy / Δx
Slope = 9/5
9/5 = Δy / Δx
Thus,
Δy = 9
Δx = 5
Next, we shall determine the second coordinates as follow:
Δy = y₂ – y₁
Δx = x₂ – x₁
For x–coordinate:
x₁ = –10
Δx = 5
Δx = x₂ – x₁
5 = x₂ – (–10)
5 = x₂ + 10
Collect like terms
x₂ = 5 – 10
x₂ = – 5
For y–coordinate:
y₁ = –16
Δy = 9
Δy = y₂ – y₁
9 = y₂ – (–16)
9 = y₂ + 16
Collect like terms
y₂ = 9 – 16
y₂ = – 7
Coordinate 2 = (x₂, y₂)
Coordinate 2 = (–5, –7)