Answer:
Probability that a randomly selected woman's gestation period will be between 261 and 279 days is 0.68.
Step-by-step explanation:
We are given that the average human gestation period is 270 days with a standard deviation of 9 days. The period is normally distributed.
Firstly, Let X = women's gestation period
The z score probability distribution for is given by;
Z =
~ N(0,1)
where,
= average gestation period = 270 days
= standard deviation = 9 days
Probability that a randomly selected woman's gestation period will be between 261 and 279 days is given by = P(261 < X < 279) = P(X < 279) - P(X
261)
P(X < 279) = P(
<
) = P(Z < 1) = 0.84134
P(X
261) = P(
) = P(Z
-1) = 1 - P(Z < 1)
= 1 - 0.84134 = 0.15866
<em>Therefore, P(261 < X < 279) = 0.84134 - 0.15866 = 0.68</em>
Hence, probability that a randomly selected woman's gestation period will be between 261 and 279 days is 0.68.
Answer:
The answer is 65.97 yd^3
Step-by-step explanation:
The volume of a cone is: v = 
So, v =
(3^2)(7/3) = 65.97345 yd^3
13,61,25,19,41
:) hope i could help :)
Use the zero product property
x - 3 = 0, and x - 2 = 0
x = 3, and x = 2
Solution: (3,0) and (2,0)