Answer:
22
Step-by-step explanation:
<span>c. 4.6
21 X .22= 4.6
Calculating the variance requires finding the product of 21 and 22%. To make this easier we convert 22% into it's decimal form and construct the equation. To back check this answer we can use 10% of 21 voters which equals 2.1% then double that amount to reach 4.2%, knowing that we now have a close approximation of the variance we can eliminate answers a, b, and d, leaving c as the only logical choice.</span>
Answer:
1. Number line 2
2. Number line 1
3. Number line 4
4. Number line 3
Step-by-step explanation:
1. x – 99 ≤ -104
Solving by adding +99 on both sides
x - 99 +99 ≤ -104 +99
x ≤ -5
Number line 2 represent x ≤ -5
2. x – 51 ≤ -43
Adding +51 on both sides
x -51 +51 ≤ -43 +51
x ≤ 8
Number line 1 represent x ≤ 8
3. 150 + x ≤ 144
Adding -150 on both sides
150 + x -150 ≤ 144 -150
x ≤ -6
Number line 4 represent x ≤ -6
4. 75 < 69 – x
Adding +x on both sides
75 + x < 69 -x +x
x < 69 -75
x < -6
Number line 3 represent x < -6
for the 0 u put zero the for 5 u put 40 then for 10 u put 80 then for 15 u put 120 then for 20 u put 160
Answer:
The 93% confidence interval for the true proportion of masks of this type whose lenses would pop out at 325 degrees is (0.3154, 0.5574). This means that we are 93% sure that the true proportion of masks of this type whose lenses would pop out at 325 degrees is (0.3154, 0.5574).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:

93% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 93% confidence interval for the true proportion of masks of this type whose lenses would pop out at 325 degrees is (0.3154, 0.5574). This means that we are 93% sure that the true proportion of masks of this type whose lenses would pop out at 325 degrees is (0.3154, 0.5574).