Answer:Evaluate the following exponential function when x = 1.
f (x) = 9 (12)Squared X + 12
F(1) =
Evaluate the following exponential function when x = 1.
f (x) = 9 (12)Squared X + 12
F(1) =Evaluate the following exponential function when x = 1.
f (x) = 9 (12)Squared X + 12
F(1) =
Step-by-step explanation:Evaluate the following exponential function when x = 1.
f (x) = 9 (12)Squared X + 12
F(1) =
(p + 6)/8 = (p - 6)/7
7(p + 6) = 8(p - 6)
7p + 42 = 8p - 48
8p - 7p = 42 + 48
p = 90
Answer:
A. 3x+14≥ 2 or 1-x ≥-5
Step-by-step explanation:
the solutions should be x≥ -4 or x ≤6
and the right answer is :
3x + 14≥ 2
3x ≥ -12
x≥ -4
1-x ≥ -5
-x ≥ -6
x ≤ 6
A. 3x+14≥ 2 or 1-x ≥-5
We have
f(x) = a(x – h)²<span> + k
we know the vertex v(5,3)
</span><span>substitute in the values for h and k
</span>f(x) = a(x – 5)²<span> + 3
</span><span>Use another point and substitute in values for x and f(x).
for the point (6,5)
</span><span>Solve for a.
5 = a(6 – 5)2 + 3-------------- > 5=a+3-------------> a=2
</span>
The function is f(x)=a(x – h)2 + k-------- > 2(x – 5)² + 3
f(x)= 2(x – 5)² + 3-------- > 2[x²-10x+25]+3=2x²-20x+50+3=2x²-20x+53
f(x)=2x²-20x+53
<span>
the answer is f(x)=</span> 2(x – 5)² + 3----------------- > (f(x)=2x²-20x+53)<span>
</span>
Answer:
12 units
Step-by-step explanation:
Point B is the midpoint of AC, and it is 6 units from C. Therefore A must be 12 units from C.
AC = 12 units