The answer is approximately 11.18.
Here's a pattern to consider:
1+100=101
2+99=101
3+98=101
4+97=101
5+96=101
.....
This question relates to the discovery of Gauss, a mathematician. He found out that if you split 100 from 1-50 and 51-100, you could add them from each end to get a sum of 101. As there are 50 sets of addition, then the total is 50×101=5050
So, the sum of the first 100 positive integers is 5050.
Quick note
We can use a formula to find out the sum of an arithmetic series:

Where s is the sum of the series and n is the number of terms in the series. It works for the above problem.
Answer:
0.128
Step-by-step explanation:
We know the probability for any event X is given by,
,
where p is the probability of success and q is the probability of failure.
Here, we are given that p = 0.533.
Since, we have that q = 1 - p
i.e. q = 1 - 0.533
i.e. q = 0.467
It is required to find the probability of 4 wins in the next 5 games i.e. P(X=4) when n = 5.
Substituting the values in the above formula, we get,

i.e. 
i.e. 
i.e. i.e. 
Hence, the probability of 4 wins in the next 5 games is 0.128.
Answer:
D
Step-by-step explanation:
Got 100%
Answer:
-135
Step-by-step explanation:
-5(9 - 6k)
Let k = -3
-5 ( 9 - 6*-3)
-5 ( 9 + 18)
-5 ( 27)