Answer:
I would need to see the models to answer this question.
Answer:
Part 1) There are infinity locations for the point B
Part 2) see the explanation
Step-by-step explanation:
Part 1) How many possible locations are there for point B?
we know that
The equation of a line in point slope form is equal to

where


substitute

Convert to slope intercept form




Point B can be any point ( different from point A) that satisfies the linear equation
therefore
There are infinity locations for the point B
Part 2) Describes a method to location the point
To locate the point, one of the two coordinates must be known. The known coordinate is placed into the linear equation and the equation is solved to find the value of the missing coordinate
Example
Suppose that the x-coordinate of point B is 4
For x=4
substitute in the linear equation

so
The coordinates of point B is (4,10.5)
The answer is D.
The full specification of Newton's First Law is (from Wikipedia)
In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
On earth we're generally in slightly a non-inertial frame, with rotation and revolution around the sun. It's also impossible to turn of gravity, so objects are being acted upon by an outside force. Typically there's also the outside force of friction, which makes things tend to stop.
Answer:
El perímetro de la región impresa es 72 cm y su área es 288 cm².
Step-by-step explanation:
1. Tenemos el perímetro de la hoja de papel:
P₁ = 96 cm = 2l₁ + 2a₁ (1)
Como sabemos el margen superior, inferior, izquierdo y derecho podemos encontrar la relación entre el largo y ancho del rectángulo interno (región impresa) con el largo (l) y ancho (a) del rectángulo externo (hoja de papel):
(2)
(3)
El perímetro del rectángulo interno es:
(4)
Introduciendo la ecuación (2) y (3) en (4):
Por lo tanto el perímetro del rectángulo interno (región impresa) es 72 cm.
2. Ahora para encontrar el área rectángulo interno debemos encontrar el largo y ancho del mismo, sabiendo que:
(5)
Introduciendo (5) en (4):



Entonces el área es:

Por lo tanto el área del rectágulo interno (región impresa) es 288 cm².
Espero que te sea de utilidad!
Answer:2.50cm
Step-by-step explanation: