Answer:
yes
Step-by-step explanation:
Polynomial Long Division :
4.3 Polynomial Long Division
Dividing : x5-5x4+10x3-10x2+5x-1
("Dividend")
By : x-1 ("Divisor")
dividend x5 - 5x4 + 10x3 - 10x2 + 5x - 1
- divisor * x4 x5 - x4
remainder - 4x4 + 10x3 - 10x2 + 5x - 1
- divisor * -4x3 - 4x4 + 4x3
remainder 6x3 - 10x2 + 5x - 1
- divisor * 6x2 6x3 - 6x2
remainder - 4x2 + 5x - 1
- divisor * -4x1 - 4x2 + 4x
remainder x - 1
- divisor * x0 x - 1
remainder 0
Quotient : x4-4x3+6x2-4x+1 Remainder: 0
It seems that some the work is already here, but I'd be glad to!! So for #3 which is 9x^2+15x, we can factor out both a 3 and an x (3x) so we know that 3x * 3x =9x^2 and 3x * 5 = 15x so once we take the 3x out of the equation, we are left with 3x(3x+5) and that's as far as you can factor.
For #4, we see that the common factor is 10m because 10m * 2n = 20mn and 10m * 3 = 30m so once we take 10m out of the original, it becomes 10m(2n-3)
For #5, this one the common factor is 4xy because 4xy * 2xy=8x^2y^2 and 4xy*x= 4x^2y and 4xy*3=12xy so once we take the 4xy out of the equation, it becomes 4xy(2xy-x-3)
Hope this helps!
T=5
4=2+2/5t
Subtract 2 from both sides.
2=2/5t
Multiply both sides by 5/2.
t=5
Answer:
Explanation:
fg(x) = (x+2)(3x^2 - 1)
= 3x^3 - x + 6x^2 - 2
= 3x^3 + 6x^2 - x - 2
gf(x) = (3x^2 - 1)(x + 2)
= 3x^3 + 6x^2 - x - 2
As you can see:
fg(x) = gf(x)
3x^3 + 6x^2 - x - 2 = 3x^3 + 6x^2 - x - 2
Answer:

Step-by-step explanation:
