Answer: Width = 24 inches
Step-by-step explanation:
Let W represent the width of the rectangular sign.
The length of a rectangular sign is 6 inches more than half its width. It means that the length of the rectangular sign would be
W/2 + 6
The formula for determining the area of a rectangle is expressed as
Area = length × width
The area of the sign is 432 square inches. Therefore, the equation for the area of this sign would be
W(W/2 + 6) = 432
W²/2 + 6W = 432
Multiplying both sides of the equation by 2, it becomes
W² + 12W = 864
W² + 12W - 864 = 0
W² + 36W - 24W - 864 = 0
W(W + 36) - 24(W + 36) = 0
W - 24 = 0 or W + 36 = 0
W = 24 or W = - 36
Since W cannot be negative, then
W = 24
Problem 3: Let x = price of bag of pretzels Let y = price of box of granola bars
We have Lesley's purchase: 4x+2y=13.50
And Landon's: 1x+5y=17.55
We can use the elimination method. Let's negate Landon's purchase by multiplying by -1. -1x-5y=-17.55
We add this four times to Lesley's purchase to eliminate the x variable.
2y-20y=13.50-70.2
-18y=-56.7
y = $3.15 = Price of box of granola bars
Plug back into Landon's purchase to solve for pretzels.
x+5*3.15=17.55
x+15.75=17.55
x = $1.80 = price of bag of pretzels
Problem 4.
Let w = number of wood bats sold
Let m = number of metal bats sold
From sales information we have: w + m = 23
24w+30m=606
Substitution works well here. Solve for w in the first equation, w = 23 - m, and plug this into the second.
24*(23-m)+30m=606
552-24m+30m=606
6m=54
m=9 = number of metal bats sold
Therefore since w = 23-m, w = 23-9 = 14. 14 wooden bats were sold.
Answer:
n=288
Step-by-step explanation:
Rewrite the equation as
√
n
=
18
√
8
−
8
√
18
.
√
n
=
18
√
8
−
8
√
18
To remove the radical on the left side of the equation, square both sides of the equation.
√n
2
=
(
18
√
8
−
8
√
18
)
2
Simplify each side of the equation.
Use
n
√
a
x
=
a
x
n
to rewrite
√
n as n
1
2
.
(
n
1
2
)
2
=
(
18
√
8
−
8
√
18
)
2
Simplify
(
n
1
2
)
2
.
Multiply the exponents in
(
n
1
2
)
2
.
Apply the power rule and multiply exponents,
(
a
m)n
=
a
m
n
.
n
1
2
⋅
2
=
(
18
√
8
−
8
√
18
)
2
Cancel the common factor of 2
Cancel the common factor.
n
1
2
⋅
2
=
(
18
√
8
−
8
√
18
)
2
Rewrite the expression.
n
1
=
(
18
√
8
−
8
√
18
)
2
Simplify.
n
=
(
18
√
8
−
8
√
18
)
2
Simplify
(
18
√
8
−
8
√
18
)
2
Simplify each term.
Rewrite
8 as 2
2
⋅
2
.
Factor
4 out of 8
n
=
(
18
√
4
(
2
)
−
8
√
18
)
2
Rewrite
4 as 2
2
n
=
(
18√
2
2
2
−
8
√
18
)
2
Pull terms out from under the radical.
n
=
(
18
(
2
√
2
)
−
8
√
18
)
2
Multiply
2 by 18
n
=
(
36
√
2
−
8
√
18
)
2
Rewrite
18
as
3
2
⋅
2
.
Factor
9
out of
18
.
n
=
(
36
√
2
−
8
√
9
(
2
)
)
2
Rewrite
9
as
3
2
.
n
=
(
36
√
2
−
8
√
3
2
⋅
2
)
2
Pull terms out from under the radical.
n
=
(
36
√
2
−
8
(
3
√
2
)
)
2
Multiply
3
by
−
8
.
n
=
(
36
√
2
−
24
√
2
)
2
Simplify terms.
Subtract
24
√
2
from
36
√
2
.
n
=
(
12
√
2
)
2
Simplify the expression.
Apply the product rule to
12
√
2
.
n
=
12
2
√
2
2
Raise
12
to the power of
2
.
n
=
144
√
2
2
Rewrite
√
2
2
as
2
.
Use
n
√
a
x
=
a
x
n
to rewrite
√
2
as
2
1
2
.
n
=
144
(
2
1
2
)
2
Apply the power rule and multiply exponents,
(
a
m
)
n
=
a
m
n
.
n
=
144
⋅
2
1
2
⋅
2
Combine
1
2
and
2
.
n
=
144
⋅
2
2
2
Cancel the common factor of
2
.
Cancel the common factor.
n
=
144
⋅
2
2
2
Rewrite the expression.
n
=
144
⋅
2
1
Evaluate the exponent.
n
=
144
⋅
2
Multiply
144
by
2
.
n
=
288
Answer:
46.2 mi is the right answer.
Step-by-step explanation:
In this question we will follow the property of congruence of two triangles.
Here two triangles formed are triangle formed by Alba, Cray and Blare and a triangle formed by Service station, Cray and Blare.
The distance between Alba and Blare = 130 mi
The distance between Alba and Cray = 120 mi
As we know in the congruent triangles all sides are in the same ratio.
Now we apply the property of the theorem



x = 46.2 mi