Answer:

Explanation:
In the question given :
Pressure is constant
Therefore, Work done, 
Pressure, P=1.01 × 105 Pa.
Final volume, 
Initial volume, 
Therefore, W=8.58\times 10^{5}\ J.
Also, Heat Given, 
Also, according to First law of thermodynamics:

Hence, this is the required solution.
Answer:
14m/s
Explanation:
Given parameters:
Radius of the curve = 50m
Centripetal acceleration = 3.92m/s²
Unknown:
Speed needed to keep the car on the curve = ?
Solution:
The centripetal acceleration is the inwardly directly acceleration needed to keep a body along a curved path.
It is given as;
a =
a is the centripetal acceleration
v is the speed
r is the radius
Now insert the parameters and find v;
v² = ar
v² = 3.92 x 50 = 196
v = √196 = 14m/s
Answer:
velocity =displacement/time
and speed =distance/time
Answer:
75degree don't forget wind and gravity force pulling down
Answer:
Part(a): the capacitance is 0.013 nF.
Part(b): the radius of the inner sphere is 3.1 cm.
Part(c): the electric field just outside the surface of inner sphere is
.
Explanation:
We know that if 'a' and 'b' are the inner and outer radii of the shell respectively, 'Q' is the total charge contains by the capacitor subjected to a potential difference of 'V' and '
' be the permittivity of free space, then the capacitance (C) of the spherical shell can be written as

Part(a):
Given, charge contained by the capacitor Q = 3.00 nC and potential to which it is subjected to is V = 230V.
So the capacitance (C) of the shell is

Part(b):
Given the inner radius of the outer shell b = 4.3 cm = 0.043 m. Therefore, from equation (1), rearranging the terms,

Part(c):
If we apply Gauss' law of electrostatics, then
