Answer:

Step-by-step explanation:
In a triangle the sum of all angle measures is always 180 degrees


degrees
By splitting the isosceles triangle down the middle we can calculate the base
So ∠H = 23°, ∠K = 90°, ∠J = 67°, HJ = 19
With this we can solve for half of the base. the trig function will need to use is sin, since the side opposite of ∠H will be part of the base. 
now we need to rearrange the formula for what we have.


This value is only half of the base, so we need to double it

let
x---------> Aviva’s age
y--------->Kanti’s age
z--------> Lakshmi’s age
we know that
y=x-3-----> equation 1
z=2*y-----> equation 2
substitute equation 1 in equation 2
z=2*(x-3)
so
Aviva’s age------> x
Kanti’s age-------> x-3
Lakshmi’s age----> 2*(x-3)
therefore
the answer is the option
b) 2(x-3)
He was 7ft and 4 inches I think
I would go with j pls tell me if wrong and i will try again
If the coefficient matrix has a pivot in each column, it means that it is shaped like this:
![A=\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Da_%7B1%2C1%7D%26a_%7B1%2C2%7D%26a_%7B1%2C3%7D%26a_%7B1%2C4%7D%5C%5C0%26a_%7B2%2C2%7D%26a_%7B2%2C3%7D%26a_%7B2%2C4%7D%5C%5C0%260%26a_%7B3%2C3%7D%26a_%7B3%2C4%7D%5C%5C0%260%260%26a_%7B4%2C4%7D%5Cend%7Barray%7D%5Cright%5D)
So, the correspondant system

will look like this:
![\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right]\cdot \left[\begin{array}{c}x_1\\x_2\\x_3\\x_4\end{array}\right] = \left[\begin{array}{c}b_1\\b_2\\b_3\\b_4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Da_%7B1%2C1%7D%26a_%7B1%2C2%7D%26a_%7B1%2C3%7D%26a_%7B1%2C4%7D%5C%5C0%26a_%7B2%2C2%7D%26a_%7B2%2C3%7D%26a_%7B2%2C4%7D%5C%5C0%260%26a_%7B3%2C3%7D%26a_%7B3%2C4%7D%5C%5C0%260%260%26a_%7B4%2C4%7D%5Cend%7Barray%7D%5Cright%5D%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%5C%5Cx_2%5C%5Cx_3%5C%5Cx_4%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Db_1%5C%5Cb_2%5C%5Cb_3%5C%5Cb_4%5Cend%7Barray%7D%5Cright%5D)
This turn into the following system of equations:

The last equation is solvable for
: we easily have

Once the value for
is known, we can solve the third equation for
:

(recall that
is now known)
The pattern should be clear: you can use the last equation to solve for
. Once it is known, the third equation involves the only variable
. Once