A glow stick will glow longer at lower temperatures than at room temperature, one can infer from the observation. Temperature and reaction time are the test variables.
We notice in this reaction that a glow stick stored in the freezer lights for a longer period of time than a glow stick stored at normal temperature. This implies that temperature affects how long a response lasts.
The most straightforward explanation for this observation is that glow sticks glow longer in colder temperatures than they do at room temperature; as a result, glow sticks kept in the freezer are observed to glow longer than glow sticks kept at room temperature.
To learn more about chemicals to the given link:
brainly.com/question/24600141
#SPJ4
Answer:
The answer to your question is: kc = 6.48
Explanation:
Data
Given Molecular weight
CaO = 44.6 g 56 g
CO₂ = 26 g 44 g
CaCO₃ = 42.3 g 100 g
Find moles
CaO 56 g ---------------- 1 mol
44.6 g -------------- x
x = (44.6 x 1) / 56 = 0.8 mol
CO₂ 44 g ----------------- 1 mol
26 g ---------------- x
x = (26 x 1 ) / 44 = 0.6 moles
CaCO₃ 100 g --------------- 1 mol
42.3g -------------- x
x = (42.3 x 1) / 100 = 0.423 moles
Concentrations
CaO = 0.8 / 6.5 = 0.12 M
CO₂ = 0.6 / 6.5 = 0.09 M
CaCO₃ = 0.423 / 6.5 = 0.07 M
Equilibrium constant = ![\frac{[products]}{[reactants]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bproducts%5D%7D%7B%5Breactants%5D%7D)
Kc = [0.07] / [[0.12][0.09]
Kc = 0.07 / 0.0108
kc = 6.48
It affects the volume of air you can inhale.