Answer:
False
Explanation:
Chemical reaction equation:
C₅H₁₂ + 8O₂ → 2CO₂ + 6H₂O
Most chemical reactions obey the law of conservation of mass. By so doing, the number of chemical elements on both sides of the expression must be balanced.
Reactants Products
C 5 4
H 12 12
O 16 10
We see that for C and O, the number of atoms on both sides of the expression differs and so, it is not balanced.
Answer:
6 We know it is closer to 1401.00 than 1400.99 or 1401.01 therefor the 6 sig figs
Explanation:
Answer:
Option D
Explanation:
Hydronium ion concentration is a measure of pH of a solution.
The mathematical equation for the same is [H3O+] = 10-pH
OR
[H3O+] = antilog (- pH)
Hence, option D is correct
Answer:
The new volume will be 3.67 L.
Explanation:
As the volume increases, the gas particles (atoms or molecules) take longer to reach the walls of the container and therefore collide with them fewer times per unit of time. This means that the pressure will be lower because it represents the frequency of collisions of the gas against the walls. In this way pressure and volume are related, determining Boyle's law which says:
"The volume occupied by a certain gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
P*V=k
Now it is possible to assume that you have a certain volume of gas V1 that is at a pressure P1 at the beginning of the experiment. If you vary the volume of gas to a new value V2, then the pressure will change to P2, and it will be fulfilled:
P1 * V1 = P2 * V2
In this case:
- P1= 1.85 atm
- V1= 4.64 L
- P2= 2.34 atm
- V2= ?
Replacing:
1.85 atm* 4.64 L= 2.34 atm* V2
Solving:

V2= 3.67 L
<u><em>The new volume will be 3.67 L.</em></u>
Answer:
hydration reaction
Explanation:
The type of reaction would be hydration reaction.
<u>Hydration reaction generally involves a chemical reaction of water with another reactant and in which the water ends up being converted to another product entirely. </u>
A good example of hydration reaction is the reaction between alkene and water leading to the production of alcohol.
⇄ 