Answer:
b < 16.5
Step-by-step explanation:
b - 9.5 + 9.5 < 7 + 9.5
b < 16.5
hope this helped :D
Answer:
B is the right answer
Step-by-step explanation:
The difference between the volume of a sphere and a cylinder is 2/3
take 30 x 2 = 60
60/3 = 20
The Volume of the Sphere is 20 m ^3
Hope this helps.
Answer:
Let's suppose that each person works at an hourly rate R.
Then if 4 people working 8 hours per day, a total of 15 days to complete the task, we can write this as:
4*R*(15*8 hours) = 1 task.
Whit this we can find the value of R.
R = 1 task/(4*15*8 h) = (1/480) task/hour.
a) Now suppose that we have 5 workers, and each one of them works 6 hours per day for a total of D days to complete the task, then we have the equation:
5*( (1/480) task/hour)*(D*6 hours) = 1 task.
We only need to isolate D, that is the number of days that will take the 5 workers to complete the task:
D = (1 task)/(5*6h*1/480 task/hour) = (1 task)/(30/480 taks) = 480/30 = 16
D = 16
Then the 5 workers working 6 hours per day, need 16 days to complete the job.
b) The assumption is that all workers work at the same rate R. If this was not the case (and each one worked at a different rate) we couldn't find the rate at which each worker completes the task (because we had not enough information), and then we would be incapable of completing the question.
Answer:
the answer is A
Step-by-step explanation:
Answer:
20.43% probability that a randomly chosen graduate from these 300 graduated with honors given that neither parent graduated from college.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
Graduated with honors:
98 students graduated with honors. Of those, 79 had at least one parent graduating from college. So 98 - 79 = 19 did not.
Of 300 students, 207 had one or both parents graduate from college. So 300 - 207 = 93 did not have at least one parent graduating.
Find the probability that a randomly chosen graduate from these 300 graduated with honors given that neither parent graduated from college.
Of the 93 with no graduated parent, 19 earned honors
19/93 = 0.2043
20.43% probability that a randomly chosen graduate from these 300 graduated with honors given that neither parent graduated from college.