The value of x such that f(x) = g(x) is x = 3
<h3>Quadratic equation</h3>
Given the following expressions as shown
f(x) = x^3-3x^2+2 and;
g(x) = x^2 -6x+11
Equate the expressions
x^3-3x^2+2 = x^2 -6x+11
Equate to zero
x^3-3x^2-x^2+2-11 = 0
x^3-3x^2-x^2 + 6x - 9 = 0
x^3-4x^2+6x-9 = 0
Factorize
On factorizing the value of x = 3
Hence the value of x such that f(x) = g(x) is x = 3
Learn more on polynomial here: brainly.com/question/2833285
#SPJ1
To ease your problem, consider "L" as you x-axis
Then the coordinate become:
A(- 4 , 3) and B(1 , 2) [you notice that just the y's changed]
This is a reflection problem.
Reflect point B across the river line "L" to get B', symmetric of B about L.
The coordinates of B'(1 , -1) [remember L is our new x-axis]
JOIN A to B' . AB' intersect L, say in H
We have to find the shortest way such that AH + HB = shortest.
But HB = HB' (symmetry about L) , then I can write instead of
AH + HB →→ AH + HB'. This is the shortest since the shortest distance between 2 points is the straight line and H is the point requiered
Answer:We need to see the net.
Step-by-step explanation:
Answer:
Step-by-step explanation:
It asks for the common set of A and B.
<u>There only one element common to both the given sets:</u>
- A={2,3,5,7} and B={2,4,6,8} ⇒ A∩B = {2}