Since the barium ion will be isoelectronic to the nearest noble gas, which is xenon, the electronic configuration for Ba2+ is: [Xe]
The statement which best describes the development of theories that connected microscopic and macroscopic phenomena is; <em>q</em><em>It took several hundred years for scientists to develop current theories, and they are still being revised to </em><em>this.</em>
<em>Discussion</em><em>;</em>
Most scientific theories involving microscopic and macroscopic phenomenon have taken several years to be developed; however, this theories are still under revision till date.
Read more:
brainly.com/question/13407374
Na⁺,SO₄²⁻ is the answer
<h3>Further explanation
</h3>
An ion is an atom or molecule that has a net electrical charge. There are many ions, one of them are sodium ion and sulfate ion.
SO₄²⁻ or Sulfate is a naturally occurring polyatomic ion that consist of a central sulfur atom surrounded by four oxygen atoms with occured widely in everyday life. Sodium ions are important for regulation of blood and body fluids, transmission of nerve impulses, heart activity, and certain metabolic functions.
Whereas Na⁺ or Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sulfate ion is a very weak base. Therefore sulfate ion undergoes negligible hydrolysis in aqueous solution.
Enter the symbol of a sodium ion, Na⁺, followed by the formula of a sulfate ion, SO₄²⁻. Separate the ions with a comma only—spaces are not allowed. Express your answers as ions separated by a comma. Therefore the answer is: Na⁺,SO₄²⁻
Hope it helps!
<h3>Learn more</h3>
- Learn more about sodium ion brainly.com/question/6839866
- Learn more about sulfate ion brainly.com/question/2763823
- Learn more about ions brainly.com/question/11852357
<h3>Answer details</h3>
Grade: 9
Subject: Chemistry
Chapter: Introduction to Mastering Chemistry
Keywords: sodium ion, sulfate ion, ions, Chemistry, symbol
Answer:

Explanation:
The Rydberg equation gives the wavelength λ for the transitions:

where
R= the Rydberg constant (1.0974 ×10⁷ m⁻¹) and

Data:

λ = 657 nm
Calculation:
