The volume generated by rotating the given region
about OC is
<h3>
Washer method</h3>
Because the given region (
) has a look like a washer, we will apply the washer method to find the volume generated by rotating the given region about the specific line.
solution
We first find the value of x and y









![v= \pi \int\limits^2_o= [\frac{y^{2} }{4} - \frac{y^{8} }{2^{8} }} ] dy](https://tex.z-dn.net/?f=v%3D%20%5Cpi%20%5Cint%5Climits%5E2_o%3D%20%5B%5Cfrac%7By%5E%7B2%7D%20%7D%7B4%7D%20-%20%5Cfrac%7By%5E%7B8%7D%20%7D%7B2%5E%7B8%7D%20%7D%7D%20%20%5D%20dy)
![v= \pi [\int\limits^2_o {\frac{y^{2} }{4} } \, dy - \int\limits^2_o {\frac{y}{2^{8} } ^{8} } \, dy ]](https://tex.z-dn.net/?f=v%3D%20%5Cpi%20%5B%5Cint%5Climits%5E2_o%20%7B%5Cfrac%7By%5E%7B2%7D%20%7D%7B4%7D%20%7D%20%5C%2C%20dy%20-%20%5Cint%5Climits%5E2_o%20%7B%5Cfrac%7By%7D%7B2%5E%7B8%7D%20%7D%20%5E%7B8%7D%20%7D%20%5C%2C%20dy%20%5D)
![v=\pi [\frac{1}{4} \frac{y^{3} }{3} \int\limits^2_0 - \frac{1}{2^{8} } \frac{y^{g} }{g} \int\limits^2_o\\v= \pi [\frac{1}{12} (2^{3} -0)-\frac{1}{2^{8}*9 } (2^{g} -0)]\\v= \pi [\frac{2}{3} -\frac{2}{g} ]\\v= \frac{4}{g} \pi](https://tex.z-dn.net/?f=v%3D%5Cpi%20%5B%5Cfrac%7B1%7D%7B4%7D%20%5Cfrac%7By%5E%7B3%7D%20%7D%7B3%7D%20%20%5Cint%5Climits%5E2_0%20-%20%5Cfrac%7B1%7D%7B2%5E%7B8%7D%20%7D%20%20%5Cfrac%7By%5E%7Bg%7D%20%7D%7Bg%7D%20%5Cint%5Climits%5E2_o%5C%5Cv%3D%20%5Cpi%20%5B%5Cfrac%7B1%7D%7B12%7D%20%282%5E%7B3%7D%20-0%29-%5Cfrac%7B1%7D%7B2%5E%7B8%7D%2A9%20%7D%20%282%5E%7Bg%7D%20-0%29%5D%5C%5Cv%3D%20%5Cpi%20%5B%5Cfrac%7B2%7D%7B3%7D%20-%5Cfrac%7B2%7D%7Bg%7D%20%5D%5C%5Cv%3D%20%5Cfrac%7B4%7D%7Bg%7D%20%5Cpi)
A similar question about finding the volume generated by a given region is answered here: brainly.com/question/3455095
Answer:
C
Step-by-step explanation:
Here in this question , we are interested in calculating the total distance covered by the train in the 10 minutes that it ran.
From the first part of the question, we already know the distances in the first 5 minutes.
Now, to calculate the total distance in the second 5 minutes, we use the distance formula since we have the average speed and the time;
Mathematically; Total distance = average speed * time
From the question, average speed is 33km/h, while time is 5 minutes. To achieve a consistent unit, we convert 5 minutes to hours.
That would be 5/60 = 1/12 hours
So the total distance in the second 5 minutes is;
33 * 1/12 = 2.75 km
Now, to calculate the total distance traveled, let’s add up the distances in the first 5 minutes and convert to kilometers;
That would be;
68 + 127 + 208 + 312 + 535 = 1,250 m
Let’s convert this to km.
We simply divide by 1000 = 1250/1000 = 1.25 km
The total distance is thus ;
1.25 + 2.75 = 4 km
first function 2nd function
slope =(y2-y1)/(x2-x1) slope =(y2-y1)/(x2-x1)
=(14-2)/(3-0) m = (-3--12/(3-0)
12/3 m=(-3+12)/3
4 m =9/3 =3
y = 4x+2 y = 3x+-12
set these two equations equal
4x+2 = 3x-12
subtract 3x
x+2 = -12
subtract 2 from each side
x = -14
y = 3x-12
y =3*(-14)-12
y = -42-12
y = -54
ChoiceD
https://www.slader.com/discussion/question/if-a-truck-traveled-248-miles-in-4-hours-then-the-truck-9c45464f/