Given:
The data values are
11, 12, 10, 7, 9, 18
To find:
The median, lowest value, greatest value, lower quartile, upper quartile, interquartile range.
Solution:
We have,
11, 12, 10, 7, 9, 18
Arrange the data values in ascending order.
7, 9, 10, 11, 12, 18
Divide the data in two equal parts.
(7, 9, 10), (11, 12, 18)
Divide each parenthesis in 2 equal parts.
(7), 9, (10), (11), 12, (18)
Now,
Median = 
=
=
Lowest value = 7
Greatest value = 18
Lower quartile = 9
Upper quartile = 12
Interquartile range (IQR) = Upper quartile - Lower quartile
= 12 - 9
= 3
Therefore, median is 10.5, lowest value is 7, greatest value is 18, lower quartile 9, upper quartile 12 and interquartile range is 3.
Answer:

Step-by-step explanation:
The scatter plot trends downward from left-> right, meaning that it is negative. Next, use two points to solve for the value for the slope.
In this case, I will use (-3 , 1) & (0 , 0)
Use the following equation. m = slope:

Let:

Plug in the corresponding numbers to the corresponding variables:

Your answer will be:

Mark Brainliest please
I think it looks like the image
Answer:Robert's minimum age is 11 years.
Step-by-step explanation:
Let x represent George's age.
Let y represent Edward's age.
Let z represent Robert's age.
George is twice as old as Edward. It means that
x = 2y
Edward's age exceeds Robert's age by 4 years. It means that
z = y - 4
If the sum of the three ages is at least 56 years, it means that
x + y + z ≥ 56 - - - - - - - - - - 1
Substituting x = 2y and z = y - 4 into equation 1, it becomes
2y + y + y - 4 ≥ 56
4y - 4 ≥ 56
4y ≥ 56 + 4
y ≥ 60/4
y ≥ 15
z = y - 4 = 15 - 4
z ≥ 11