-5 is the real part and 6i is the imaginary part. This can be determined by looking which number has the "i" attached to it.
Answer: 6x+18
Step-by-step explanation: Because of the Distributive property, you would multiply the 6 by the’x’ and 3, as they are in the parenthesis.
20% in fraction form is....
1) 20 is the percent
2)to put it in a fraction form.......
3) you need to divide it by 100.
4) 20 /100 equals 0.2
5) 0.2 says it's out of 2/10
6) if you want to simplify you can so go ahead: 2/10 >>> (turns into) 1/5
7) 1/5 is your answer...
8) PLEASE GIVE THIS A THANKS AND THE BRAINIEST ANSWER/CROWN...IF NOT...WELL PLEASE DO :) :) :) :) :D :D :D ;D:D
Answer:
Δ AXY is not inscribed in circle with center A.
Step-by-step explanation:
Given: A circle with center A
To find: Is Δ AXY inscribed in circle or not
A figure 1 is inscribed in another figure 2 if all vertex of figure 1 is on the boundary of figure 2.
Here figure 1 is Δ AXY with vertices A , X and Y
And figure 2 is Circle.
Clearly from figure, Vertices A , X and Y are not on the arc/boundary of circle.
Therefore, Δ AXY is not inscribed in circle with center A.
(a) The lateral surface area of the prism is 720 sq units and the total surface area is 752 sq units.
(b) The lateral surface area of the cone is 136π sq units and the total surface area is 200π sq units.
(c) The lateral surface area of the cylinder is 242π sq units and the total surface area is 484π sq units.
<h3>
Lateral surface area of the prism</h3>
L.S.A = Ph
where;
- P is perimeter of the base
- h is height of the prism
h² = 17² - 8²
h² = 225
h = 15
L.S.A = (3 x 16) x 15 = 720 sq units
<h3>Total s
urface area of the prism</h3>
T.S.A = PH + 2B
T.S.A = 720 + 2(16) = 752 sq units
<h3>
Lateral surface area of the cone</h3>
L.S.A = πrt
where;
- t is the slant height = 17
r² = 17² - 15²
r² = 64
r = 8
L.S.A = π(8)(17) = 136π sq units
<h3>
Total surface area of the cone</h3>
T.S.A = πrt + πr²
T.S.A = 136π sq units + π(8)²
T.S.A = 200π sq units
<h3>
Lateral surface area of the cylinder</h3>
L.S.A = 2πrh
where;
- r is the radius of the cylinder = 11
- h is height of the cylinder = 11
L.S.A = 2π(11 x 11) = 242π sq units
<h3>Total
surface area of the cylinder</h3>
T.S.A = 2πrh + 2πr² = 2πr(r + h)
T.S.A = 2π(11)(11 + 11)
T.S.A = 484π sq units.
Thus, the lateral surface area of the prism is 720 sq units and the total surface area is 752 sq units.
- the lateral surface area of the cone is 136π sq units and the total surface area is 200π sq units.
- the lateral surface area of the cylinder is 242π sq units and the total surface area is 484π sq units.
Learn more about surface area here: brainly.com/question/76387
#SPJ1