1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lena [83]
3 years ago
7

Help please?! This is graphing rational functions

Mathematics
1 answer:
guapka [62]3 years ago
7 0

Answer:

D: (-∞,2) (2,∞)

R:(-∞,0),(0,∞)

Step-by-step explanation:

From the graph we can see that the graph is approaching 0 horizontally and 2 vertically but not crossing so we can assumer these are the asymptotes. So the domain goes all the way from -∞ to 2 but does not cross 2 so we have to stop there and create another bracket for 2 to ∞. It is the same process for the range but in the y direction.

You might be interested in
What is 8 3/4 ÷ 2 7/8 (show ur work)
xxMikexx [17]

Answer:

<em><u>see</u></em><em><u> </u></em><em><u>below</u></em><em><u>:</u></em><em><u>-</u></em>

Step-by-step explanation:

\displaystyle{8 \frac{3}{4} \div 2 \frac{7}{8}  }

  • Convert the mixed fractions into improper fractions.

\displaystyle{ \frac{8 \times 4 + 3}{4} \div  \frac{8 \times 2 + 7}{8}  }

\displaystyle{ \frac{32 + 3}{4}  \div  \frac{16 + 7}{8} }

\displaystyle{ \frac{35}{4} \div  \frac{23}{8}  }

\displaystyle{ \frac{35}{4}  \times  \frac{8}{23} }

\displaystyle{ \frac{35}{ \cancel4}  \times  \frac{ \cancel8 {}^{2} }{23} }

\displaystyle{ \frac{35  \times 2}{23} }

\displaystyle{ \frac{70}{23} }

\displaystyle{3 \frac{1}{23} }

6 0
2 years ago
Read 2 more answers
What is the following product? <br>(4x square root 5x^2 + 2^2 square root 6)^2​
tangare [24]

The product is 104 x^{4}+16 \sqrt{30} x^{4}

Explanation:

The given expression is \left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}

We need to determine the product of the given expression.

First, we shall simplify the given expression.

Thus, we have,

\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=\left(4 x \sqrt{5} x+2 x^{2} \sqrt{6}\right)^2

\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=\left(4 x^{2} \sqrt{5}+2 x^{2} \sqrt{6}\right)^2

Expanding the expression, we have,

\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=\left(4 x^{2} \sqrt{5}+2 x^{2} \sqrt{6}\right)\left(4 x^{2} \sqrt{5}+2 x^{2} \sqrt{6}\right)

Now, we shall apply FOIL, we get,

\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=\left(4 x^{2} \sqrt{5}\right)^{2}+2 ( 2 x^{2} \sqrt{6})(4 x^{2} \sqrt{5})+\left(2 x^{2} \sqrt{6}\right)^{2}

Simplifying the terms, we have,

\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=16 \cdot 5 x^{4}+16 \sqrt{30} x^{4}+4 \cdot 6 x^{4}

Multiplying, we get,

\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=80 x^{4}+16 \sqrt{30} x^{4}+24 x^{4}

Adding the like terms, we get,

\left(4 x \sqrt{5 x^{2}}+2 x^{2} \sqrt{6}\right)^{2}=104 x^{4}+16 \sqrt{30} x^{4}

Thus, the product of the given expression is 104 x^{4}+16 \sqrt{30} x^{4}

7 0
3 years ago
Given that (-8,- 7) in on the graph of f(x), find the corresponding point for the fuction f(x -4)
kiruha [24]
The point (x1,y1) on the graph of f(x) is the point (x1-a,y1) for the function
f(x+a)

(-8,-7)=(x1,y1)→x1=-8, y1=-7
f(x-4)=f(x+a)→a=-4

(x1-a, y1)=(-8-(-4), -7)=(-8+4, -7)=(-4,-7)

<span>The corresponding point for the fuction f(x -4) is (-4,-7)</span>
8 0
3 years ago
Rearrange w= 3(2a + b) - 4 to make a the subject
Angelina_Jolie [31]

Answer:

\boxed{a =  \frac{w}{ 6}  -  \frac{b}{2}  +  \frac{2}{3} }

Step-by-step explanation:

Solve  \: for \:  a:  \\  =  > w=3(2a+b)-4  \\  \\ w=3(2a+b)4 \: is \: equivalent \: to \: 3(2a+b)-4= w:  \\  =  > 3(2a+b) - 4=w  \\  \\ Expand \:  out \:  terms \:  of  \: the  \: left  \: hand \:  side:  \\  =  > (3 \times 2a) + (3 \times b) - 4 = w \\  =  > 6a+3b - 4=w  \\  \\ Subtract  \: 3b  - 4 \:  from  \: both \:  sides:  \\  =  >   6a + 3b - 4 - (3b - 4)=w - (3b - 4) \\   =  > 6a = w - 3b + 4 \\  \\ Divide  \: both  \: sides \:  by  \: 6: \\  =  >  \frac{ \cancel{6}a}{ \cancel{6}}  =  \frac{w - 3b + 4}{6}  \\   =  > a =  \frac{w}{6}  -  \frac{3b}{6}  +  \frac{4}{6}  \\  =  > a =  \frac{w}{ 6}  -  \frac{b}{2}  +  \frac{2}{3}

8 0
3 years ago
Can anyone show how they solved this really need help
charle [14.2K]
The total number of degrees in would be 720. By subtracting all other angles you will find x.

720-129-105-135-130-95=126

X=126
6 0
3 years ago
Read 2 more answers
Other questions:
  • X-2/3=1/3 this is the problem
    15·2 answers
  • 2(x+3) + 6 = 3x - 9 written in word form? HELP!!!
    14·1 answer
  • The sum of Ted's and Leon's ages is
    7·1 answer
  • A circle with radius \pink{5}5start color #ff00af, 5, end color #ff00af has a sector with a central angle of \purple{\dfrac{9}{1
    15·1 answer
  • Can someone please help?
    15·2 answers
  • Answer quickly pls!!!! The two-way table below shows the number of students in a school who like hockey and/or football: (pic sh
    9·2 answers
  • Factor the given quadratic function using the reverse box method. 2x2 + 3x - 9​
    8·1 answer
  • What is the measure of &lt;2
    7·1 answer
  • Help me with this and I'll give you brainilest!
    15·1 answer
  • Question 7
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!