Answer:
I think its C but I'm not too sure.
Answer:
Step 1: 0.246 = 246⁄1000
Step 2: Simplify 246⁄1000 = 123⁄500
<h3>Given</h3>
tan(x)²·sin(x) = tan(x)²
<h3>Find</h3>
x on the interval [0, 2π)
<h3>Solution</h3>
Subtract the right side and factor. Then make use of the zero-product rule.
... tan(x)²·sin(x) -tan(x)² = 0
... tan(x)²·(sin(x) -1) = 0
This is an indeterminate form at x = π/2 and undefined at x = 3π/2. We can resolve the indeterminate form by using an identity for tan(x)²:
... tan(x)² = sin(x)²/cos(x)² = sin(x)²/(1 -sin(x)²)
Then our equation becomes
... sin(x)²·(sin(x) -1)/((1 -sin(x))(1 +sin(x))) = 0
... -sin(x)²/(1 +sin(x)) = 0
Now, we know the only solutions are found where sin(x) = 0, at ...
... x ∈ {0, π}
Answer:
3/4
Step-by-step explanation:
Use slope formula y2-y1 over x2-x1
9-3=6
5--3 becomes 5+3 which equals 8
so 6/8
which when simplified is 3/4.