Dy/dx (2x⁵ y³ - 4y/x)
dy/dx (2y³ x⁵ - 4y/x)
dy/dx ( 2y³ x⁵ ) - dy/dx (4y/x)
= 2y³ 5x⁴ - (-4y × 1/x²)
=
10x⁶ y³ + 4y
-------------------
x²
Step-by-step explanation:
to "solve" this I need an equation.
this whole expression must be equal to something.
without that I can only try to simplify the expression.
remember that
a/b / c/d = ad / bc
so, here we have
3a/(((a²/x) - 1)(a/x - 1)) = 3a/(a³/x² - a²/x - a/x + 1) =
= 3a/(a³/x² - a²/x - a/x - a/a) =
= 3a/((a²/x² - a/x - 1/x - 1/a)×a) = 3/(a²/x² - a/x - 1/x - 1/a)
The answer to the question is 4
im 11 can I?
Step-by-step explanation:
Since the triangle DEF is an equilateral triangle and x is the height of this triangle, we can use the following formula for the height of an equilateral triangle:
![h=\frac{l\sqrt[]{3}}{2}](https://tex.z-dn.net/?f=h%3D%5Cfrac%7Bl%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D)
Where 'l' is the length of the triangle side.
So, using l = 13, we have:
![\begin{gathered} x=\frac{13\cdot\sqrt[]{3}}{2} \\ x=\frac{13\cdot1.73}{2} \\ x=11.2 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B13%5Ccdot%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D%20%5C%5C%20x%3D%5Cfrac%7B13%5Ccdot1.73%7D%7B2%7D%20%5C%5C%20x%3D11.2%20%5Cend%7Bgathered%7D)
So the value of x is 11.2