Answer:
Molecular genetic approaches to the study of plant metabolism can be traced back to the isolation of the first cDNA encoding a plant enzyme (Bedbrook et al., 1980), the use of the Agrobacterium Ti plasmid to introduce foreign DNA into plant cells (Hernalsteens et al., 1980) and the establishment of routine plant transformation systems (Bevan, 1984; Horsch et al., 1985). It became possible to express foreign genes in plants and potentially to overexpress plant genes using cDNAs linked to strong promoters, with the aim of modifying metabolism. However, the discovery of the antisense phenomenon of plant gene silencing (van der Krol et al., 1988; Smith et al., 1988), and subsequently co‐suppression (Napoli et al., 1990; van der Krol et al., 1990), provided the most powerful and widely‐used methods for investigating the roles of specific enzymes in metabolism and plant growth. The antisense or co‐supression of gene expression, collectively known as post‐transcriptional gene silencing (PTGS), has been particularly versatile and powerful in studies of plant metabolism. With such molecular tools in place, plant metabolism became accessible to investigation and manipulation through genetic modification and dramatic progress was made in subsequent years (Stitt and Sonnewald, 1995; Herbers and Sonnewald, 1996), particularly in studies of solanaceous species (Frommer and Sonnewald, 1995).
Answer: it attempts to to stabilize the river by creating a state of equilibrium
Explanation: Sediment transport occurs in natural systems where the particles are clastic rocks (sand, gravel, boulders, etc.), mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting.
Answer:
Explanation:
The basis for the inverse relationship between number of matured HDL in circulation and and cardiovascular disease is that when new HDL entertainment circulation they mature by picking up extra cholesterol until they become mature and high cholesterol level is a major cause of cardiovascular disease and atherosclerosis. The implication of this is that the more the number of matured HDL in circulation, the lower the cholesterol level in the blood thus the lower the risk of cardiovascular disease and atherosclerosis.
The best answer should be
D) Food component that can be stored in the body for future energy needs