Answer:
(x + 4)^2 + (y - 8)^2 = 81
or
(x + 4)^2 + (y - 8)^2 = 9^2 depending on how your teacher wants it written.
Step-by-step explanation:
The standard form for a circle is
(x + h)^2 + (y + k)^2 = r^2
r is the radius.
You are given the diameter
r = d/2
r = 18/2
r = 9
So you already have the right hand side of the equation
(x + h)^2 + (y + k)^2 = 9*2
(x + h)^2 + (y + k)^2 = 81
You basically have h and k as well. They come from the center point.
h = 4
k = - 8
So the equation of the circle (and the answer) is
(x + 4)^2 + (y - 8)^2 = 81
One question remains. Why do the x and y values change signs? If you know what the distance formula is, then what you are finding is the distance r of all points on the circle from the center of the circle.
It is the distance formula that is actually the formula for the circle.
Answer:
18
Step-by-step explanation:
x+x+17+6=49
2x=36
x=18
s1=18
s2=35
s3=6
SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given set of values

STEP 2: Write the formula for calculating the Standard deviation of a set of numbers
![\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ where\text{ }x_i\text{ are data points,} \\ \bar{x}\text{ is the mean} \\ \text{n is the number of values in the data set} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S%5Ctan%20dard%5Ctext%7B%20deviation%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B%5Csum%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D%20%5C%5C%20where%5Ctext%7B%20%7Dx_i%5Ctext%7B%20are%20data%20points%2C%7D%20%5C%5C%20%5Cbar%7Bx%7D%5Ctext%7B%20is%20the%20mean%7D%20%5C%5C%20%5Ctext%7Bn%20is%20the%20number%20of%20values%20in%20the%20data%20set%7D%20%5Cend%7Bgathered%7D)
STEP 3: Calculate the mean

STEP 4: Calculate the Standard deviation
![\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ \sum ^{}_{}(x_i-\bar{x})^2\Rightarrow\text{Sum of squares of differences} \\ \Rightarrow10332.7225+657.9225+18591.3225+982.8225+2740.52251+9731.8225+3522.4225+18319.6225+2878.3225 \\ +8163.1225+1417.5225+3925.0225+1321.3225+386.1225+5677.6225+2953.9225+3800.7225 \\ +3209.2225+2565.4225+10537.0225 \\ \text{Sum}\Rightarrow108974.0275 \\ \\ S\tan dard\text{ deviation}=\sqrt[]{\frac{111714.55}{20-1}}=\sqrt[]{\frac{111714.55}{19}} \\ \Rightarrow\sqrt[]{5879.713158}=76.67928767 \\ \\ S\tan dard\text{ deviation}\approx76.68 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S%5Ctan%20dard%5Ctext%7B%20deviation%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B%5Csum%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D%20%5C%5C%20%5Csum%20%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%5CRightarrow%5Ctext%7BSum%20of%20squares%20of%20differences%7D%20%5C%5C%20%5CRightarrow10332.7225%2B657.9225%2B18591.3225%2B982.8225%2B2740.52251%2B9731.8225%2B3522.4225%2B18319.6225%2B2878.3225%20%5C%5C%20%2B8163.1225%2B1417.5225%2B3925.0225%2B1321.3225%2B386.1225%2B5677.6225%2B2953.9225%2B3800.7225%20%5C%5C%20%2B3209.2225%2B2565.4225%2B10537.0225%20%5C%5C%20%5Ctext%7BSum%7D%5CRightarrow108974.0275%20%5C%5C%20%20%5C%5C%20S%5Ctan%20dard%5Ctext%7B%20deviation%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B111714.55%7D%7B20-1%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B111714.55%7D%7B19%7D%7D%20%5C%5C%20%5CRightarrow%5Csqrt%5B%5D%7B5879.713158%7D%3D76.67928767%20%5C%5C%20%20%5C%5C%20S%5Ctan%20dard%5Ctext%7B%20deviation%7D%5Capprox76.68%20%5Cend%7Bgathered%7D)
Hence, the standard deviation of the given set of numbers is approximately 76.68 to 2 decimal places.
STEP 5: Calculate the First and third quartile

STEP 6: Find the Interquartile Range

Hence, the interquartile range of the data is 116
The answer is either A or D, B and C are off the table because the two shapes need to be graphed for those to be relevant. The answer you get should be A I believe.