We want to find the median for the given density curve.
The value of the median is 1.
Let's see how to solve this.
First, for a regular set {x₁, ..., xₙ} we define the median as the middle value. The difference between a set and a density curve is that the density curve is continuous, so getting the exact middle value can be harder.
Here, we have a constant density curve that goes from -1 to 3.
Because it is constant, the median will just be equal to the mean, thus the median is the average between the two extreme values.
Remember that the average between two numbers a and b is given by:
(a + b)/2
So we get:
m = (3 + (-1))/2 = 1
So we can conclude that the value of the median is 1, so the correct option is the second one, counting from the top.
If you want to learn more, you can read:
brainly.com/question/15857649
Answer:
The highest total cholesterol level a man in this 35–44 age group can have and be in the lowest 10% is 160.59 milligrams per deciliter.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Find the highest total cholesterol level a man in this 35–44 age group can have and be in the lowest 10%.
This is the 10th percentile, which is X when Z has a pvalue of 0.1. So X when Z = -1.28.




The highest total cholesterol level a man in this 35–44 age group can have and be in the lowest 10% is 160.59 milligrams per deciliter.
Answer:
Look down
Step-by-step explanation:
So, to use distributive property you have to multiply the out side to the inside.
3(9-4)=15-8
Multiply 3and nine then 4.
3+27-12=15-8
I hope this helped you
Step-by-step explanation: The cosecant function is graphed in the given figure. we are to find the period of the function.
The period of a function is the distance travelled by the curve of the function in one complete revolution.
We can see that in the given figure, the distance between two consecutive points is given by
Therefore, the period of the cosecant function is
Thus, the correct option is (B) \pi.