Answer:
the last one -) -7
Step-by-step explanation:
if this help you please give me a crown please
SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given set of values
![321,397,559,454,475,324,482,558,369,513,385,360,459,403,498,477,361,366,372,320](https://tex.z-dn.net/?f=321%2C397%2C559%2C454%2C475%2C324%2C482%2C558%2C369%2C513%2C385%2C360%2C459%2C403%2C498%2C477%2C361%2C366%2C372%2C320)
STEP 2: Write the formula for calculating the Standard deviation of a set of numbers
![\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ where\text{ }x_i\text{ are data points,} \\ \bar{x}\text{ is the mean} \\ \text{n is the number of values in the data set} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S%5Ctan%20dard%5Ctext%7B%20deviation%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B%5Csum%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D%20%5C%5C%20where%5Ctext%7B%20%7Dx_i%5Ctext%7B%20are%20data%20points%2C%7D%20%5C%5C%20%5Cbar%7Bx%7D%5Ctext%7B%20is%20the%20mean%7D%20%5C%5C%20%5Ctext%7Bn%20is%20the%20number%20of%20values%20in%20the%20data%20set%7D%20%5Cend%7Bgathered%7D)
STEP 3: Calculate the mean
![\begin{gathered} \bar{x}=\frac{\sum ^{}_{}x_i}{n} \\ \bar{x}=\frac{\sum ^{}_{}(321,397,559,454,475,324,482,558,369,513,385,360,459,403,498,477,361,366,372,320)}{20} \\ \bar{x}=\frac{8453}{20}=422.65 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Csum%20%5E%7B%7D_%7B%7Dx_i%7D%7Bn%7D%20%5C%5C%20%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Csum%20%5E%7B%7D_%7B%7D%28321%2C397%2C559%2C454%2C475%2C324%2C482%2C558%2C369%2C513%2C385%2C360%2C459%2C403%2C498%2C477%2C361%2C366%2C372%2C320%29%7D%7B20%7D%20%5C%5C%20%5Cbar%7Bx%7D%3D%5Cfrac%7B8453%7D%7B20%7D%3D422.65%20%5Cend%7Bgathered%7D)
STEP 4: Calculate the Standard deviation
![\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ \sum ^{}_{}(x_i-\bar{x})^2\Rightarrow\text{Sum of squares of differences} \\ \Rightarrow10332.7225+657.9225+18591.3225+982.8225+2740.52251+9731.8225+3522.4225+18319.6225+2878.3225 \\ +8163.1225+1417.5225+3925.0225+1321.3225+386.1225+5677.6225+2953.9225+3800.7225 \\ +3209.2225+2565.4225+10537.0225 \\ \text{Sum}\Rightarrow108974.0275 \\ \\ S\tan dard\text{ deviation}=\sqrt[]{\frac{111714.55}{20-1}}=\sqrt[]{\frac{111714.55}{19}} \\ \Rightarrow\sqrt[]{5879.713158}=76.67928767 \\ \\ S\tan dard\text{ deviation}\approx76.68 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S%5Ctan%20dard%5Ctext%7B%20deviation%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B%5Csum%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D%20%5C%5C%20%5Csum%20%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%5CRightarrow%5Ctext%7BSum%20of%20squares%20of%20differences%7D%20%5C%5C%20%5CRightarrow10332.7225%2B657.9225%2B18591.3225%2B982.8225%2B2740.52251%2B9731.8225%2B3522.4225%2B18319.6225%2B2878.3225%20%5C%5C%20%2B8163.1225%2B1417.5225%2B3925.0225%2B1321.3225%2B386.1225%2B5677.6225%2B2953.9225%2B3800.7225%20%5C%5C%20%2B3209.2225%2B2565.4225%2B10537.0225%20%5C%5C%20%5Ctext%7BSum%7D%5CRightarrow108974.0275%20%5C%5C%20%20%5C%5C%20S%5Ctan%20dard%5Ctext%7B%20deviation%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B111714.55%7D%7B20-1%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B111714.55%7D%7B19%7D%7D%20%5C%5C%20%5CRightarrow%5Csqrt%5B%5D%7B5879.713158%7D%3D76.67928767%20%5C%5C%20%20%5C%5C%20S%5Ctan%20dard%5Ctext%7B%20deviation%7D%5Capprox76.68%20%5Cend%7Bgathered%7D)
Hence, the standard deviation of the given set of numbers is approximately 76.68 to 2 decimal places.
STEP 5: Calculate the First and third quartile
![\begin{gathered} \text{IQR}=Q_3-Q_1 \\ \\ To\text{ get }Q_1 \\ We\text{ first arrange the data in ascending order} \\ \mathrm{Arrange\: the\: terms\: in\: ascending\: order} \\ 320,\: 321,\: 324,\: 360,\: 361,\: 366,\: 369,\: 372,\: 385,\: 397,\: 403,\: 454,\: 459,\: 475,\: 477,\: 482,\: 498,\: 513,\: 558,\: 559 \\ Q_1=(\frac{n+1}{4})th \\ Q_1=(\frac{20+1}{4})th=\frac{21}{4}th=5.25th\Rightarrow\frac{361+366}{2}=\frac{727}{2}=363.5 \\ \\ To\text{ get }Q_3 \\ Q_3=(\frac{3(n+1)}{4})th=\frac{3\times21}{4}=\frac{63}{4}=15.75th\Rightarrow\frac{477+482}{2}=\frac{959}{2}=479.5 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BIQR%7D%3DQ_3-Q_1%20%5C%5C%20%20%5C%5C%20To%5Ctext%7B%20get%20%7DQ_1%20%5C%5C%20We%5Ctext%7B%20first%20arrange%20the%20data%20in%20ascending%20order%7D%20%5C%5C%20%5Cmathrm%7BArrange%5C%3A%20the%5C%3A%20terms%5C%3A%20in%5C%3A%20ascending%5C%3A%20order%7D%20%5C%5C%20320%2C%5C%3A%20321%2C%5C%3A%20324%2C%5C%3A%20360%2C%5C%3A%20361%2C%5C%3A%20366%2C%5C%3A%20369%2C%5C%3A%20372%2C%5C%3A%20385%2C%5C%3A%20397%2C%5C%3A%20403%2C%5C%3A%20454%2C%5C%3A%20459%2C%5C%3A%20475%2C%5C%3A%20477%2C%5C%3A%20482%2C%5C%3A%20498%2C%5C%3A%20513%2C%5C%3A%20558%2C%5C%3A%20559%20%5C%5C%20Q_1%3D%28%5Cfrac%7Bn%2B1%7D%7B4%7D%29th%20%5C%5C%20Q_1%3D%28%5Cfrac%7B20%2B1%7D%7B4%7D%29th%3D%5Cfrac%7B21%7D%7B4%7Dth%3D5.25th%5CRightarrow%5Cfrac%7B361%2B366%7D%7B2%7D%3D%5Cfrac%7B727%7D%7B2%7D%3D363.5%20%5C%5C%20%20%5C%5C%20To%5Ctext%7B%20get%20%7DQ_3%20%5C%5C%20Q_3%3D%28%5Cfrac%7B3%28n%2B1%29%7D%7B4%7D%29th%3D%5Cfrac%7B3%5Ctimes21%7D%7B4%7D%3D%5Cfrac%7B63%7D%7B4%7D%3D15.75th%5CRightarrow%5Cfrac%7B477%2B482%7D%7B2%7D%3D%5Cfrac%7B959%7D%7B2%7D%3D479.5%20%5Cend%7Bgathered%7D)
STEP 6: Find the Interquartile Range
![\begin{gathered} IQR=Q_3-Q_1 \\ \text{IQR}=479.5-363.5 \\ \text{IQR}=116 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20IQR%3DQ_3-Q_1%20%5C%5C%20%5Ctext%7BIQR%7D%3D479.5-363.5%20%5C%5C%20%5Ctext%7BIQR%7D%3D116%20%5Cend%7Bgathered%7D)
Hence, the interquartile range of the data is 116
Step1. find the how much he buy he buy 45
step2. find the % the % is 4 move to decimal left 4% which is .04
step3. multilply the how much he buy or the % so this is that 45*.04=1.8
step4. what are they said they said tax is like add so we got 1.8+$45=46.8
so the answer is 46.8
look at what is the step and you understand the problem more easy way.
9514 1404 393
Answer:
14.9 cm
Step-by-step explanation:
To find c using the Law of Sines, you must know angle C. That is found from ...
C = 180° -A -B = 180° -150° -12° = 18°
Then the law of sines tells you ...
c/sin(C) = b/sin(B)
c = b·sin(C)/sin(B) = (10 cm)·sin(18°)/sin(12°)
c ≈ 14.9 cm