The solution to a system of (linear) equations is the point where the graphs intersect. Consider two parallel lines. By definition, two parallel lines never intersect each other, but all pairs of non-parallel lines will eventually intersect. That means they will also have a solution.
Let's consider what makes a line parallel to another line. It basically looks identical, having the same steepness (slope), but the graph is just shifted over. That is, a parallel line would have the same slope and a different y-intercept. For our equation

, or

in slope-intercept form, a parallel line will be of the form

.
That describes the form of a parallel line, which we do not want. Any other line, however, will give a solution to our system, so we merely want a line where the slope does not equal 2.
We can have any equation of the form

.
PV=FV/(1+i)^t
FV=7000, i=3.5%=0.035,t=9
put everything in the formula
PV=7000/(1+0.035)^9
PV=$5136.12
The answer is A because 24 3/8 inches is roughly 2 feet, 100/2 is 50, and since there is a small 3/8 value, the answer is 49
Answer:
d
Step-by-step explanation:d
Answer:
Yes they can all be written in y = mx + b. You just have to move the terms around.
Step-by-step explanation:
y = 2x -3, this is already in slope-intercept form
Now, y - 2 = x + 2: We can add 2 on both sides to cancel out the one on the left side:
y - 2 = x + 2
y - 2 + 2 = x + + 2
y = x + 4 <-- This is in y = mx + b form
Now the last one, 3x = 9 + 3y
We can first divide all terms by 3,
3x = 9 + 3y
/3 /3 /3
x = 3 + y: Then we can subtract 3 from both sides:
x - 3 = 3 + y - 3
x - 3 = y
These are all linear equations because none of the x's have bigger powers than 1. x^2 is a quadratic equation and x^3 is cubic equation.