C the answer hehehehehehehwhw
I would say y = ln x + 4
you can use a graphing calculator
Answer:
option B : ![f(x)= log_7(x-39)](https://tex.z-dn.net/?f=f%28x%29%3D%20log_7%28x-39%29)
Step-by-step explanation:
(a) ![f(x) = 7^{x-39}](https://tex.z-dn.net/?f=f%28x%29%20%3D%207%5E%7Bx-39%7D)
For exponential function , there is no vertical asymptotes
General form of exponential function is
![f(x) = n^{ax-b}+k](https://tex.z-dn.net/?f=f%28x%29%20%3D%20n%5E%7Bax-b%7D%2Bk)
![f(x) = 7^{x-39}](https://tex.z-dn.net/?f=f%28x%29%20%3D%207%5E%7Bx-39%7D)
In the given f(x) the value of k =0
So horizontal asymptote is y=0
(b) lets check with option
![f(x)= log_7(x-39)](https://tex.z-dn.net/?f=f%28x%29%3D%20log_7%28x-39%29)
To find vertical asymptote we set the argument of log =0 and solve for x
Argument of log is x-39
x-39=0 so x=39
Hence vertical asymptote at x=39
Answer:
8, 10, 24
(Basically every number above 4)