The weight in 1980 is
kilograms
<em><u>Solution:</u></em>
From 1980 to 1990, Lior’s weight increased by 25%
His weight is "k" kilograms in 1990
<em><u>To find: weight in 1980</u></em>
This is a percentage increase problem
Let "x" be the weight in kilograms in 1980
<em><u>The percentage increase is given by formula:</u></em>
![\text{Percentage increase } = \frac{\text{Final value - initial value}}{\text{initial value}} \times 100](https://tex.z-dn.net/?f=%5Ctext%7BPercentage%20increase%20%7D%20%3D%20%5Cfrac%7B%5Ctext%7BFinal%20value%20-%20initial%20value%7D%7D%7B%5Ctext%7Binitial%20value%7D%7D%20%5Ctimes%20100)
Here,
Initial value in 1980 = x
Final value in 1990 = k
Percentage increase = 25 %
<em><u>Substituting the values in formula,</u></em>
![25 = \frac{k-x}{x} \times 100\\\\25x = 100(k-x)\\\\x = 4(k-x)\\\\x = 4k - 4x\\\\5x = 4k\\\\x = \frac{4k}{5}](https://tex.z-dn.net/?f=25%20%3D%20%5Cfrac%7Bk-x%7D%7Bx%7D%20%5Ctimes%20100%5C%5C%5C%5C25x%20%3D%20100%28k-x%29%5C%5C%5C%5Cx%20%3D%204%28k-x%29%5C%5C%5C%5Cx%20%3D%204k%20-%204x%5C%5C%5C%5C5x%20%3D%204k%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B4k%7D%7B5%7D)
Thus the weight in kilograms in 1980 is ![\frac{4k}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B4k%7D%7B5%7D)