Answer:
Measurement of angle ABC: 120
Measurement of arc ACE: 240
Measurement of arc AB: 60
Step-by-step explanation:
I got it right on my test
Answer:
3
Step-by-step explanation:
lim(t→∞) [t ln(1 + 3/t) ]
If we evaluate the limit, we get:
∞ ln(1 + 3/∞)
∞ ln(1 + 0)
∞ 0
This is undetermined. To apply L'Hopital's rule, we need to rewrite this so the limit evaluates to ∞/∞ or 0/0.
lim(t→∞) [t ln(1 + 3/t) ]
lim(t→∞) [ln(1 + 3/t) / (1/t)]
This evaluates to 0/0. We can simplify a little with u substitution:
lim(u→0) [ln(1 + 3u) / u]
Applying L'Hopital's rule:
lim(u→0) [1/(1 + 3u) × 3 / 1]
lim(u→0) [3 / (1 + 3u)]
3 / (1 + 0)
3
Answer:
A: y = -2x^2
Step-by-step explanation:
The parent function would be y = x^2 since it is a parabola.
Since the function has a vertical stretch by 2, y = 2x^2.
Finally, the function is inverted so the final equation would be y = -2x^2
Answer: k = -8/9j + -1/9m + 1
Step 1: Flip the equation.<span><span><span><span>−8j </span>− 9k </span>+ 9 </span>= m
</span>Step 2: Add -9 to both sides.<span><span><span><span><span>−8j </span>− 9k </span>+ 9 </span>+ −9 </span>= <span>m + −9</span></span><span><span><span>−8j </span>− 9k </span>= <span>m − 9
</span></span>Step 3: Add 8j to both sides.<span><span><span><span>−8j </span>−9k </span>+ 8j </span>= <span>m −9 + 8j</span></span><span><span>−9k </span>= <span><span>8j + m </span>−9
</span></span><span>Step 4: Divide both sides by -9.
-9k/-9 = 8j + m - 9/-9
</span><span>k = -8/9j + -1/9m + 1</span>