Answer:
a) So, this integral is convergent.
b) So, this integral is divergent.
c) So, this integral is divergent.
Step-by-step explanation:
We calculate the next integrals:
a)
![\int_1^{\infty} e^{-2x} dx=\left[-\frac{e^{-2x}}{2}\right]_1^{\infty}\\\\\int_1^{\infty} e^{-2x} dx=-\frac{e^{-\infty}}{2}+\frac{e^{-2}}{2}\\\\\int_1^{\infty} e^{-2x} dx=\frac{e^{-2}}{2}\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D%5Cleft%5B-%5Cfrac%7Be%5E%7B-2x%7D%7D%7B2%7D%5Cright%5D_1%5E%7B%5Cinfty%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D-%5Cfrac%7Be%5E%7B-%5Cinfty%7D%7D%7B2%7D%2B%5Cfrac%7Be%5E%7B-2%7D%7D%7B2%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D%5Cfrac%7Be%5E%7B-2%7D%7D%7B2%7D%5C%5C)
So, this integral is convergent.
b)
![\int_1^{2}\frac{dz}{(z-1)^2}=\left[-\frac{1}{z-1}\right]_1^2\\\\\int_1^{2}\frac{dz}{(z-1)^2}=-\frac{1}{1-1}+\frac{1}{2-1}\\\\\int_1^{2}\frac{dz}{(z-1)^2}=-\infty\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D%5Cleft%5B-%5Cfrac%7B1%7D%7Bz-1%7D%5Cright%5D_1%5E2%5C%5C%5C%5C%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D-%5Cfrac%7B1%7D%7B1-1%7D%2B%5Cfrac%7B1%7D%7B2-1%7D%5C%5C%5C%5C%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D-%5Cinfty%5C%5C)
So, this integral is divergent.
c)
![\int_1^{\infty} \frac{dx}{\sqrt{x}}=\left[2\sqrt{x}\right]_1^{\infty}\\\\\int_1^{\infty} \frac{dx}{\sqrt{x}}=2\sqrt{\infty}-2\sqrt{1}\\\\\int_1^{\infty} \frac{dx}{\sqrt{x}}=\infty\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D%5Cleft%5B2%5Csqrt%7Bx%7D%5Cright%5D_1%5E%7B%5Cinfty%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D2%5Csqrt%7B%5Cinfty%7D-2%5Csqrt%7B1%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D%5Cinfty%5C%5C)
So, this integral is divergent.
The area of a rectangle is the result of multiplying its length times its width. So the rectangles length and width are factor pairs of the area.
The number 36 has four non-equal, whole number factor pairs: (1,36) ; (2,18) ; (3,13) ; (4,9)
*note : (6,6) makes a square not rectangle
The number 15 has only two whole number factor pairs (1,15) and (3,5)
Multiply -12 to each of the terms (make sure to carry the negative!)
-36a - 24b + 12 will be your final answer :)
Answer:
5(7d-5)
Step-by-step explanation:
taking 5 common from 35d-25
= 5(7d- 5)