1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
3 years ago
9

Una familia está conformada por el padre, la madre, el hijo y la hija, el padre tiene el doble de la edad del hijo, la madre tie

ne 6 años menos que el padre, la hija tiene 5 años más que el hijo. sumando sus edades dan 106. calcular que edad tienen cada uno.
Mathematics
2 answers:
Jlenok [28]3 years ago
8 0

Answer:

PADRE=36 AÑOS - MADRE=30 AÑOS - HIJA=23 AÑOS - HIJO= 18 AÑOS

Mariulka [41]3 years ago
3 0

Answer:

Step-by-step explanation:

First off, this wouldn't make sense for a girl to be older than her mother or her father.

Second, mother is x years old. The girl is 2x years old. The father is x+5 years old. Total sum = 100.

So, we need to solve for x first.

2x + x + x+5 = 100

4x + 5 = 100

4x = 95

4x ÷ 4 = 95 ÷ 4

x = 23.75

Mother is 23 and 3 quarters, turning 24.

Daughter is 23.75 × 2 = 47 1/2 years old.

And the Father is 28 and 3 quarters, turning 29.

You might be interested in
What is the area of this tile
dsp73
Is there any options?
5 0
3 years ago
Read 2 more answers
Whats 5^2 X 8^2<br><br> When your teacher falls asleep in class
Ray Of Light [21]
The answer to this is 1600
6 0
3 years ago
Read 2 more answers
Which translation maps the graph of the function f(x) equals X to add to the function GX equals X2 onto the function g(x) = x2 +
NNADVOKAT [17]

Answer:

left 1 unit, up 5 units

Step-by-step explanation:

To answer the question:

<em>Which translation maps the graph of the function f(x) = x² onto the function g(x) = x² + 2x + 6?</em>

we need to find the vertex of g(x), as follows:

  • x-coordinate of the vertex (h): -b/(2a) = -2/(2*1) = -1
  • y-coordinate of the vertex (k): y = (-1)² + 2(-1) + 6 = 5

Therefore, g(x) can be rewritten as:

g(x) = a(x - h)² + k

g(x) = (x + 1)² + 5

which is the equation of f(x) = x² translated 1 unit to the left and 5 units up.

5 0
3 years ago
Compute the sum:
Nady [450]
You could use perturbation method to calculate this sum. Let's start from:

S_n=\sum\limits_{k=0}^nk!\\\\\\\(1)\qquad\boxed{S_{n+1}=S_n+(n+1)!}

On the other hand, we have:

S_{n+1}=\sum\limits_{k=0}^{n+1}k!=0!+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=0}^{n}(k+1)!=\\\\\\=1+\sum\limits_{k=0}^{n}k!(k+1)=1+\sum\limits_{k=0}^{n}(k\cdot k!+k!)=1+\sum\limits_{k=0}^{n}k\cdot k!+\sum\limits_{k=0}^{n}k!\\\\\\(2)\qquad \boxed{S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n}

So from (1) and (2) we have:

\begin{cases}S_{n+1}=S_n+(n+1)!\\\\S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\end{cases}\\\\\\&#10;S_n+(n+1)!=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\\\\\\&#10;(\star)\qquad\boxed{\sum\limits_{k=0}^{n}k\cdot k!=(n+1)!-1}

Now, let's try to calculate sum \sum\limits_{k=0}^{n}k\cdot k!, but this time we use perturbation method.

S_n=\sum\limits_{k=0}^nk\cdot k!\\\\\\&#10;\boxed{S_{n+1}=S_n+(n+1)(n+1)!}\\\\\\&#10;

but:

S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\=&#10;\sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\=&#10;\sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\&#10;\boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}

When we join both equation there will be:

\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\&#10;S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\&#10;\sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\=&#10;(n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\=&#10;n(n+1)!+1

So the answer is:

\boxed{\sum\limits_{k=0}^{n}(1+k^2)k!=n(n+1)!+1}

Sorry for my bad english, but i hope it won't be a big problem :)
8 0
4 years ago
Use long division to determine the decimal equivalent of 5 over 9. 0 point 3 bar 0 point 4 bar 0 point 5 bar 0 point 6 bar
LenaWriter [7]

Answer:

Option 3 - 0 point 5.

Step-by-step explanation:

Given : Decimal equivalent of 5 over 9.

To find : Use long division to determine the decimal?

Solution :

We have to divide 5 by 9,

Step 1 - Divide 5 by 9 as it is not divisible put a decimal and 0 after 5,

Step 2 - Now, divide 50 by 9 the quotient is 5 and remainder is 5.

Step 3 - Again put 0 and divide the number repeat the process until the remainder is not zero.

We have done the calculation up to 3-decimal place.

So, \frac{5}{9}=0.555

Approximately, \frac{5}{9}=0.5

So, Option 3 is correct.

Refer the attached figure for calculation.

5 0
4 years ago
Other questions:
  • Y=(3)/(10-x) Solve for x.
    15·1 answer
  • Sandy bought 3/4 yard of red ribbon and 2/3 yard of white ribbon to make some hair bows.Altogether,how many yards of ribbon did
    6·2 answers
  • Describe the steps when adding the following number sentence: -45 + 10 + (-20) + 20
    7·1 answer
  • Please help with 1 and 3!! Thank you!!
    7·1 answer
  • Explain how you used mental math
    6·2 answers
  • Someone PLEASE help me. this is an area of sectors problem and im confused.
    11·2 answers
  • What is the value of x?<br><br> x = 32<br> x = 36<br> x = 37<br> x = 40
    10·1 answer
  • 5 5/6 ÷ 3 3/4 - 2/9=
    6·2 answers
  • Which has the greater value:
    10·1 answer
  • Number 6 please help 10 points
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!