The test That holds true for this inequality is given as 1/4 and 1
<h3>How to solve for the inequality</h3>
3/2 y - 2x > 1
The goal is to make y the subject
then
3/2 y > 2x + 1
We have to divide through the equation by 3/2
Such that y > 4/3 x + 2/3
Read more on inequality here: brainly.com/question/25275758
#SPJ1
Tigers! Have a great day!
Answer:
The solution set represented by the following graph is:
{x | x∈ R, x < -2}
Step-by-step explanation:
Clearly from the figure we could see that the solution set is to the left of ' -2' and excluding the point '-2' since there is a open circle at -2.
This means that -2 is not included in the set.
Also in interval; form the set of points that belong to the solution set are:
(-∞,-2)
in set-builder form it is written as:
{x | x∈ R, x < -2}
Answer:
1/32v²sin2θ
Step-by-step explanation:
Given the expression r(theta) = 1/16v²sinθcosθ
According to double angle of trigonometry identity;
Sin2θ = sin(θ+θ)
Sin2θ = sinθcosθ + cosθsinθ
Sin2θ = 2sinθcosθ
sinθcosθ = sin2θ/2 ... **
Substituting equation ** into the question
1/16v²sinθcosθ = 1/16v²(sin2θ/2)
1/16v²sinθcosθ = 1/2×1/16v²(sin2θ)
1/16v²sinθcosθ = 1/32v²sin2θ
Hence using the double angle identity, the equivalent expression is 1/32v²sin2θ