The surface area of a cylindrical can is equal to the sum of the area of two circles and the body of the cylinder: 2πr2 + 2πrh. volume is equal to π<span>r2h.
V = </span>π<span>r2h = 128 pi
r2h = 128
h = 128/r2
A = </span><span>2πr2 + 2πrh
</span>A = 2πr2 + 2πr*(<span>128/r2)
</span>A = 2πr2 + 256 <span>π / r
</span><span>
the optimum dimensions is determined by taking the first derivative and equating to zero.
dA = 4 </span>πr - 256 <span>π /r2 = 0
r = 4 cm
h = 8 cm
</span><span>
</span>
Tan 60 in radical for is square root of 3
Step-by-step explanation:
90+48=138
180-138=42
y=42
Answer:
4
Step-by-step explanation:
6/6+6+2-5=
The equation of the newsletter function is C(x) = 75 + 0.25x and the function values are C(0) = 75, C(100) = 100, C(200) = 125 and C(300) = 150
<h3 /><h3>How to determine the newsletter function?</h3>
From the question, the given parameters are
Initial charge = $75.00
Rate per copy = $0.25 per copy
The equation of the newsletter function is then calculated as
Total = Initial charge + Rate per copy x Number of copies
Let x represents the number of copies
So, we have
Total = Initial charge + Rate per copy x x
This gives
C(x) = 75 + 0.25x
<h3>The function values for x = 0, 100, 200 and 300</h3>
When x = 0, we have
C(0) = 75 + 0.25 x 0 = 75
When x = 100, we have
C(100) = 75 + 0.25 x 100 = 100
When x = 200, we have
C(200) = 75 + 0.25 x 200 = 125
When x = 300, we have
C(300) = 75 + 0.25 x 300 = 150
Read more about linear equations at
brainly.com/question/4074386
#SPJ1