1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eddi Din [679]
3 years ago
10

Lesson 8: Systems of Equations and Inequalities Unit Test CE 2015

Mathematics
2 answers:
Crank3 years ago
4 0
Is this for connections academy 
OLEGan [10]3 years ago
3 0

Answer:

We are asked to find which graph represents the solution of the given system of equations:

y=-x+2------------(1)

and y=3x-1-------------(2)

We find the intersection point of the two equations by solving these system of equations using elimination method as:

subtract equation (2) from equation (1) to obtain:

0=-4x+3

3=4x

x=\dfrac{3}{4}=0.75

Also putting this value of x in equation (1) we get:

y=-\dfrac{3}{4}+2\\\\y=\dfrac{-3+4\times 2}{4}\\\\y=\dfrac{-3+8}{4}\\\\y=\dfrac{5}{4}=1.25

Hence, the intersection point is:  (0.75,1.25).

Hence the graph that represents the solution of the system of given linear equations is attached to the answer.

You might be interested in
In this equation, what is n?
raketka [301]
N is the variable, you solve by subtracting 6 from 20, getting n = 14.
5 0
3 years ago
Read 2 more answers
HELP MEE!!!
SIZIF [17.4K]

A- none because they are parallel lines

5 0
3 years ago
Time spent using​ e-mail per session is normally​ distributed, with mu equals 11 minutes and sigma equals 3 minutes. Assume that
liq [111]

Answer:

a) 0.259

b) 0.297

c) 0.497

Step-by-step explanation:

To solve this problem, it is important to know the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central limit theorem

The Central Limit Theorem estabilishes that, for a random variable X, with mean \mu and standard deviation \sigma, a large sample size can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}

In this problem, we have that:

\mu = 11, \sigma = 3

a. If you select a random sample of 25 ​sessions, what is the probability that the sample mean is between 10.8 and 11.2 ​minutes?

Here we have that n = 25, s = \frac{3}{\sqrt{25}} = 0.6

This probability is the pvalue of Z when X = 11.2 subtracted by the pvalue of Z when X = 10.8.

X = 11.2

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{11.2 - 11}{0.6}

Z = 0.33

Z = 0.33 has a pvalue of 0.6293.

X = 10.8

Z = \frac{X - \mu}{s}

Z = \frac{10.8 - 11}{0.6}

Z = -0.33

Z = -0.33 has a pvalue of 0.3707.

0.6293 - 0.3707 = 0.2586

0.259 probability, rounded to three decimal places.

b. If you select a random sample of 25 ​sessions, what is the probability that the sample mean is between 10.5 and 11 ​minutes?

Subtraction of the pvalue of Z when X = 11 subtracted by the pvalue of Z when X = 10.5. So

X = 11

Z = \frac{X - \mu}{s}

Z = \frac{11 - 11}{0.6}

Z = 0

Z = 0 has a pvalue of 0.5.

X = 10.5

Z = \frac{X - \mu}{s}

Z = \frac{10.5 - 11}{0.6}

Z = -0.83

Z = -0.83 has a pvalue of 0.2033.

0.5 - 0.2033 = 0.2967

0.297, rounded to three decimal places.

c. If you select a random sample of 100 ​sessions, what is the probability that the sample mean is between 10.8 and 11.2 ​minutes?

Here we have that n = 100, s = \frac{3}{\sqrt{100}} = 0.3

This probability is the pvalue of Z when X = 11.2 subtracted by the pvalue of Z when X = 10.8.

X = 11.2

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{11.2 - 11}{0.3}

Z = 0.67

Z = 0.67 has a pvalue of 0.7486.

X = 10.8

Z = \frac{X - \mu}{s}

Z = \frac{10.8 - 11}{0.3}

Z = -0.67

Z = -0.67 has a pvalue of 0.2514.

0.7486 - 0.2514 = 0.4972

0.497, rounded to three decimal places.

5 0
3 years ago
A uniform distribution is defined over the interval from 6 to 10.
scoundrel [369]
Are you given an equation?
6 0
3 years ago
A school purchased T-shirts to sell for a fundraiser. The school spent $684 for the T-shirts. Each T-shirt will sell for $12.
Setler79 [48]

Answer:

If the question is How many T-Shirts does the school have, it will be 57 T-Shirts

Step-by-step explanation:

684 divided by 12 is 57

8 0
2 years ago
Other questions:
  • The graph shows the distance, in feet, required for a car to come to a full stop if the brake is fully applied and the car was i
    11·2 answers
  • Which of the following numbers can be evenly divided by 4?
    11·1 answer
  • Help aaawjjwjwjwjsjjwwksk
    7·1 answer
  • The table shows the width and length of different pictures that Coby has enlarged for the school yearbook: Enlarged Pictures Wid
    12·2 answers
  • Choose the situation in which the use of approximate numbers is most appropriate.
    11·1 answer
  • Please answer in complete sentences. Fully answer all questions. A community sponsored a charity square dance where admission wa
    8·1 answer
  • Which steps can be taken to translate the phrase ""the difference in the number of servings and four""? Check all that apply.
    7·2 answers
  • Identify which of the following pairs of angles are complementary and which are supplementary?
    15·1 answer
  • Fiona was thinking of a number. Fiona doubles it and adds 5.1 to get an answer of 11.5.
    8·1 answer
  • What is the measurement of angel c
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!