Is would be a I think because if you times those to numbers you get 20
9514 1404 393
Answer:
dy/dx = y/(2x)
Step-by-step explanation:
The product formula can be used, along with the power rule.
d(uv) = du·v +u·dv
__
d(y^2/x) = d(18)
2y·dy/x -y^2/x^2·dx = 0
2x·dy -y·dx = 0 . . . . . . . . multiply by x^2/y
dy/dx = y/(2x) . . . . . . . . add y·dx, divide by 2x·dx
<h3>Rate of the boat in still water is 70 km/hr and rate of the current is 15 km/hr</h3><h3><u>Solution:</u></h3>
Given that,
A motorboat travels 165 kilometers in 3 hours going upstream and 510 kilometers in 6 hours going downstream
Therefore,
Upstream distance = 165 km
Upstream time = 3 hours
<h3><u>Find upstream speed:</u></h3>

Thus upstream speed is 55 km per hour
Downstream distance = 510 km
Downstream time = 6 hours
<h3><u>Find downstream speed:</u></h3>

Thus downstream speed is 85 km per hour
<em><u>If the speed of a boat in still water is u km/hr and the speed of the stream is v km/hr, then</u></em>
Speed downstream = u + v km/hr
Speed upstream = u - v km/hr
Therefore,
u + v = 85 ----- eqn 1
u - v = 55 ----- eqn 2
Solve both
Add them
u + v + u - v = 85 + 55
2u = 140
u = 70
<em><u>Substitute u = 70 in eqn 1</u></em>
70 + v = 85
v = 85 - 70
v = 15
Thus rate of the boat in still water is 70 km/hr and rate of the current is 15 km/hr
There are two sides (heads and tails). So one head would be 1/2, and one tail would also be 1/2.
Answer:
Yes it is
Step-by-step explanation: