Answer:
Shifts 4 units down --->
Stretches f(x) by a factor of 4 away from x-axis--->
Shifts f(x) 4 units right--->
Compress f(x) by a factor of 1/4 toward the y-axis --->
Step-by-step explanation:
We are given
We need to match the transformations.
1) shifts f(x) 4 units down.
When function f(x) shifts k units down the new function becomes f(x)-k
In our case
So, Shifts 4 units down --->
2) Stretches f(x) by a factor of 4 away from x-axis
When function f(x) is stretched by a factor of b away from x-axis the new function becomes f(bx)
So, Stretches f(x) by a factor of 4 away from x-axis--->
3) Shifts f(x) 4 units right
When function f(x) shifts h units right the new function becomes f(x-h)
So, Shifts f(x) 4 units right--->
4) Compress f(x) by a factor of 1/4 toward the y-axis
When function f(x) is compressed by h factor of a toward the y-axis the new function becomes h.f(x)
Compress f(x) by a factor of 1/4 toward the y-axis --->
(Option Not given)
(If we compress f(x) by a factor of 4 towards y-axis we get g(x)=8x-24)