The value of x given the perimeter of the square is 6.
<h3>What is the value of x?</h3>
The first step is to determine the perimeter of the square.
Perimeter of the square = 4 x length
4 x 2.5x = 10x yards
The perimeter of the triangle is equal to the sum of the three side lengths
2x + 4x - 2 + 2x + 14 = 10x
Combine similar terms
14 - 2 = 10x - 2x - 4x - 2x
Add similar terms
12 = 2x
Divide both sies by 2
x = 6
To learn more about triangles, please check: brainly.com/question/22949981
The y-intercept is the value of y when x is equal to zero. From the equation,
y = 500 + 50x
the y-intercept is calculated by:
y = 500 + 50(0) = 500
Therefore, the correct answer is option B. The y-intercept is 500; it represents the one-time campaign fee.
Since the triangle has equal sides it will carry onto it self at 120, since it can rotate 360 grades only and it has 3 sides so it will rotate in one third of 360 so 120
i hope i helped you
Set x as adult tickets.
Set y as children's tickets.
x + y = 15
30x + 20y = 270
Solve for x in the first equation.
x + y = 15
x = 15 - y
Plug this into the second equation.
30x + 20y = 270
30(15 - y) + 20y = 270
450 - 30y + 20y = 270
450 - 10y = 270
-10y = -180
y = 18
If there is 18 childrens tickets, there should be -3 adult tickets.
This is impossible, and this impossible answer occured because the question is written wrong.
There are a total of 15 tickets
The smallest costing ticket is the childrens ticket, which costs 20$.
If he only bought children tickets, this would be 20x15 which is 300$.
300$ is over 270$, which makes the question impossible.
Answer:
μ = 5.068 oz
Step-by-step explanation:
Normal distribution formula to use the table attached
Z = (x - μ)/σ
where μ is mean, σ is standard deviation, Z is on x-axis and x is a desired point.
98% of 6-oz. cups will not overflow means that the area below the curve is equal to 0.49; note that the curve is symmetrical respect zero, so, 98% of the cases relied between the interval (μ - some value) and (μ + some value)].
From table attached, area = 0.49 when Z = 2.33. From data, σ = 0.4 oz and x = 6 oz (maximum capacity of the cup). Isolating x from the formula gives
Z = (x - μ)/σ
2.33 = (6 - μ)/0.4
μ = 6 - 2.33*0.4
μ = 5.068
This means that with a mean of 5 oz and a standard deviation of 0.4 oz, the machine will discharge a maximum of 6 oz in the 98% of the cases.