Answer: the service charge per hour for premium services is $5.5
the service charge per hour for regular services is $3
Step-by-step explanation:
Let x represent the service charge per hour for premium services.
Let y represent the service charge per hour for regular services.
One customer was charged $38 after spending 2 h in premium areas and 9 regular hours. It means that
2x + 9y = 38- - - - - - - - - - - 1
Another customer spent 3 h in premium areas and 6 regular hours and was charged $34.50. It means that
3x + 6y = 34.5- - - - - - - - - - -2
We would eliminate x by multiplying equation 1 by 3 and equation 2 by 2. It becomes
6x + 27y = 114
6x + 12y = 69
Subtracting, it becomes
15y = 45
y = 45/15
y = 3
Substituting y = 3 into equation 1, it becomes
2x + 9 × 3 = 38
2x + 27 = 38
2x = 38 - 27 = 11
x = 11/2 = 5.5
Answer:
Let f be a function. If any horizontal line intersects the graph of f more than once, then f does not have an inverse. An absolute value function (without domain restriction) has an inverse that is NOT a function. That's why an absolute value function does not have an inverse function。
The lines would go up and over at the same rate. They would have the same slope, like parallel lines.
Hope this helps!! :)
Answer:
y = 10
Step-by-step explanation:
Given y varies inversely as x then the equation relating them is
y =
← k is the constant of variation
To find k use the condition x = 4 when y = 15 , then
15 =
( multiply both sides by 4 )
60 = k
y =
← equation of variation
When x = 6 , then
y =
= 10
Answer:
L = 97, w = 27
Step-by-step explanation:
The perimeter formula is P = 2L + 2w. We have too many unknowns simply to plug in, so we have to find a way to identify one in terms of the other. The statement is that the length is 16 feet more than 3 times the width, so the length is in terms of the width and can be identified as
L = 3w + 16
and the width, then, is just w. Now we can fill in those 2 values, both in terms of w, and set it to equal the perimeter value we were given of 248:
2(3w + 16) + 2w = 248 and
6w + 32 + 2w = 248 and
8w + 32 = 248 and
8w = 216 so
w = 27
That means that the width is 27. Use that value of w now to find the length where
L = 3w + 16.
L = 3(27) + 16 and
L = 97