Answer:
Hello !
The solutions are: -8 , -4 , 6
Hope this helps !
Answer:
The intermediate step are;
1) Separate the constants from the terms in x² and x
2) Divide the equation by the coefficient of x²
3) Add the constants that makes the expression in x² and x a perfect square and factorize the expression
Step-by-step explanation:
The function given in the question is 6·x² + 48·x + 207 = 15
The intermediate steps in the to express the given function in the form (x + a)² = b are found as follows;
6·x² + 48·x + 207 = 15
We get
1) Subtract 207 from both sides gives 6·x² + 48·x = 15 - 207 = -192
6·x² + 48·x = -192
2) Dividing by 6 x² + 8·x = -32
3) Add the constant that completes the square to both sides
x² + 8·x + 16 = -32 +16 = -16
x² + 8·x + 16 = -16
4) Factorize (x + 4)² = -16
5) Compare (x + 4)² = -16 which is in the form (x + a)² = b
The location of the y value of R' after using the translation rule is -10
<h3>What will be the location of the y value of R' after using the translation rule? </h3>
The translation rule is given as:
(x + 4, y - 7)
The pre-image of R is located at (-17, -3)
Rewrite as
R = (-17, -3)
When the translation rule is applied, we have:
R' = (-17 + 4, -3 - 7)
Evaluate
R' = (-13, -10)
Remove the x coordinate
R'y = -10
Hence, the location of the y value of R' after using the translation rule is -10
Read more about translation at:
brainly.com/question/26238840
#SPJ1
Answer:
B because you multiply all the similar numbers together then at the end you add them all up.Step-by-step explanation:
Answer:
jajajajajjajajajajjajajajjajajajaj